

Commercial Fertilizer

References

 Mid-Atlantic Nutrient Management Handbook

– Chapter 8: Commercial Fertilizers

Commercial Fertilizer

- Nitrogen
- Phosphorous
- Potassium
- (Sulfur)
- (Lime)

Nitrogen

 Inorganic N fertilizers are produced by fixing N from the atmosphere

- Natural gas as the energy source

Nitrogen Fertilizers

- Urea [CO(NH₂)₂]:
 - Fertilizer grade: 46-0-0
 - Soluble, readily available source of N
 - Dry fertilizer product
 - Produced by reacting ammonia (NH₃) with carbon dioxide under pressure at an elevated temperature
 - Contains the highest percentage of N of all dry fertilizers
- Ammonium nitrate (NH_4NO_3) :
 - Fertilizer grade: 34-0-0
 - Soluble, readily available source of N; non volatile and non leeching
 - Dry fertilizer product
- Ammonium sulfate [(NH₄)₂SO₄]:
 - Fertilizer grade: 21-0-0-24S
 - Contains 24% sulfur
 - Soluble, readily available source of N and S
- Non-pressure nitrogen solutions:
 - Fertilizer grade: ranges from 28-0-0 to 32-0-0
 - Soluble, readily available source of N
 - Liquid fertilizer product that does not require pressure for storage
 - Usually referred to as UAN (Urea Ammonium Nitrate)
- Aqua ammonia (NH_4OH):
 - Fertilizer grade: 20-0-0 (most common)
 - Density of 20-0-0 is 7.60 lbs/gal at 60°F
 - Produced by dissolving NH₃ gas in water

Phosphorous

- Ingredient for producing phosphorus (P) fertilizers is rock phosphate
 - Comes from the mineral apatite, a calcium
- Most conventional P fertilizers are made by reacting rock phosphate with:
 - Sulfuric acid to create superphosphate (20%)
 - Phosphoric acid to create triple superphosopate (46%)

Phosphorus Fertilizer

- Diammonium phosphate [(NH₄)₂HPO₄]:
 - Fertilizer grade: 18-46-0
 - Soluble, readily available source of P and N
 - Dry fertilizer product
- Monoammonium phosphate (NH₄H₂PO₄):
 - Fertilizer grade: 11-52-0
 - Soluble, readily available source of P and N
- Ammonium polyphosphate [(NH₄)n+2PnO₃n+1]:
 - Fertilizer grade: 10-34-0 or 11-37-0
 - Soluble, readily available source of P and N
 - Liquid fertilizer product
- Concentrated (Triple) superphosphate [Ca(H₂PO₄)2•H₂O]:
 - Fertilizer grade: 0-46-0
 - Soluble, readily available source of P
 - Dry fertilizer product

Potassium

- Term "potash"
 - Comes from an early production technique where potassium was leached from wood ashes and concentrated by evaporating the leachate in large iron pots ("pot-ash")
- Potash is a potassium-rich salt that is mined from underground deposits formed from evaporated sea beds millions of years ago
- **Elemental potassium is K
- **Potash is K₂O

Potassium Fertilizer

- Potassium chloride (Muriate of Potash) (KCI):
 - Most abundantly used form of potassium fertilizer
 - Contains 60-63% K₂O
 - Water soluble source of K
- Potassium sulfate (K_2SO_4) :
 - Contains 50-53% K_2O , 18% S, and no more than 2.5% Cl
- Potassium-magnesium sulfate (sul-po-mag) (K₂SO₄•2MgSO₄):
 - Contains about 22% K₂O, 11% Mg, 22% S, and no more than 2.5% Cl
 - Along with the K, this product is a good source of Mg and S
- Potassium nitrate (KNO₃):
 - Contains about 44% K2O and 13% N

Fertilizer Analysis

- Expressed as **PERCENTAGES**
 - -N = % nitrogen
 - -P = % phosphorus
 - K = % potassium (potash)
 - -S = % Sulphur
- N-P-K-S

Fertilizer Materials

- 4 Categories, 2 Types
 - Granular
 - Dry Bulk Blend
 - Ammoniated Dry Granular
 - Liquid
 - Clear Liquid Solution
 - Liquid Suspension

Dry Bulk Blends

- A blend is made by mixing two or more fertilizer materials
 - Particles of nitrogen, phosphate, potash, limestone filler, and some secondary nutrients and micronutrients Produced by blending various dry materials
- Custom blending to meet exact nutrient needs of the crop

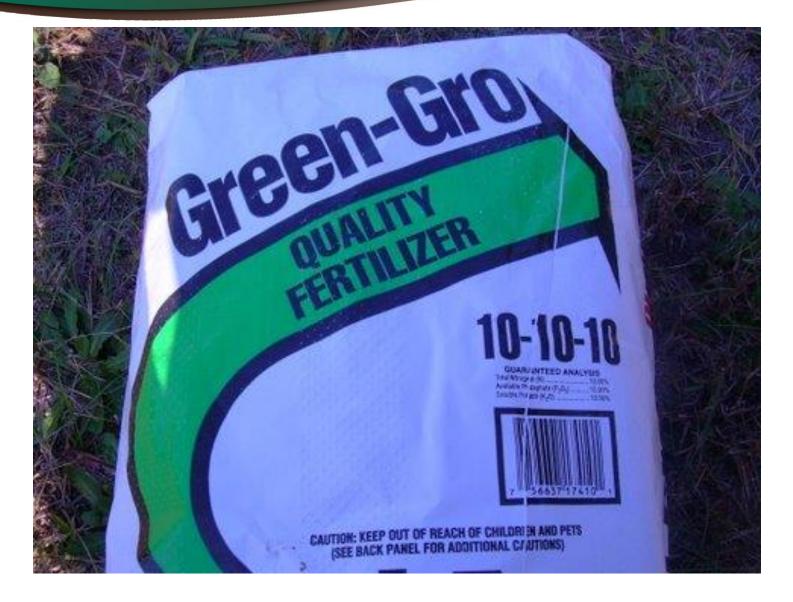
Dry Bulk Blends

- Important to match particle size and density
- Reduces segregation during transport to the field
- Larger particle and less dense materials tend to move to the top of the load
- Similar particles improve uniformity during application

- more dense particles throw farther

Dry Bulk Blends

- Common dry nitrogen (N) materials – ammonium sulfate 21-0-0-24
 - UREA 46-0-0
- Common Dry Phosphate (P) materials
 - Diammonium phosphate (DAP) 18-46-0
 - concentrated (triple) superphosphate 0-46-0
- Common Dry Potassium (K) materials
 muriatic of potash (potash) 0-0-60
 - potassium-magnesium sulfate 22-22-11
 - (sul-po-mag or k-mag)


Ammoniated Dry Granular

- In ammoniated fertilizers materials supplying N, P, K, etc.. are chemically combined into one solid granule
 - The granules' size, shape and density are closely controlled so that each granule has consistent percentages of each nutrient.
- Ammoniated fertilizer distribution breakdown is not possible because the nutrients are chemically combined, resulting in a consistent application

Bulk Blended vs Ammoniated

- Ammoniated
 - Chemically manufactured for homogenous blended of N-P-K in each granule
 - Better for lower analysis (banding along rows)
- Bulk Blends
 - Mixed together physically; segregate during transportation, handling and application, resulting in uneven distribution in the field
 - Can be mixed on site to meet specific recommendations
 - Higher analysis
 - Less manufacturing costs

Clear Liquids

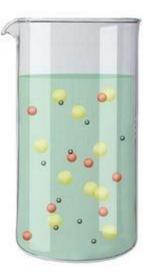
- Cold mix process
 - Start 10-34-0 base
 - commonly used as a starter
 - additional nitrogen or potash sources may be added for a complete fertilizer

Clear Liquids

- Hot mix process
 - aqua ammonia reacted with phosphoric acid
 - (generates considerable heat)
 - water (filler), potash, and additional nitrogen added to mix

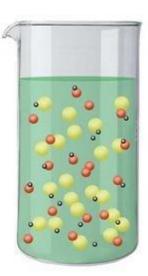
Clear Liquids

- Hot mix process
 - common liquid materials
 - aqua ammonia 20-0-0
 - phosphoric acid
 - water
 - potash 0-0-60
 - 28%-32% UAN nitrogen solution
 - micronutrients

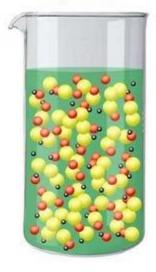


Liquid Suspension

- High analysis with clear liquids is limited
 - Clay provides a surface for the fertilizer salts to form on
- Nutrients are held in "suspension"
 - Suspensions allow for less material per acre (higher analysis)
- Flexibility
 - Allows for more acres per load
- Agitation necessary to prevent settling of clay


Clear Solution

Macro Nutrients


Saturated Solution

Sub Macro Nutrients

Water Soluble Suspension

Micro Nutrients

- •Fe •Mn •Zn •Cu
 - 211 Cu
- B Co
- Mo

Advantages of Granular and Liquid

- Liquid
 - Ease of handling and application (once set up)
 - Ease of blending
 - Uniformity of application
 - Starter and in-season application
 - Blend with crop protection products
- Granular
 - Cheaper in bulk
 - Easier to store (does not "settle out" over time or "salt out" in cold weather)
 - More efficient for heavy pre-plant applications
 - Slow-release options (polymer-coated urea)

Disadvantages

- Spatial:
 - distance from plant roots to fertilizer nutrients
 - less mobile nutrients (phosphorus) can't get closer than the individual granule containing them
 - in liquid form more mobile in the soil water solution
- Salt content
 - granular fertilizers can be "hot"
 - roots can steer away from a band of granular fertilizer that contains high levels of nitrogen and potassium
- Consistency
 - nutrient content is identical in every drop of liquid fertilizer
 - granular have individual nutrient components in each granule
- Equipment
 - cost of converting equipment to handle liquid fertilizer can be \$\$

TerraGator

RoGator

Nurse Trucks

Tender Trucks and Trailers

Dry Truck

Sidedress

