Virginia Coastal Resilience Technical Advisory Committee

Research, Data and Innovation Quarterly Subcommittee Meeting

Date: Tuesday, October 17th, 2023 Time: 01:00 pm

Location: All Virtual Meeting

Virtual Access: Register at

https://vcu.zoom.us/meeting/register/tZYpcuCorzktGNbg3FCPjx8BsK3bB0u9RZcg

1

Meeting Agenda

- 1. Call to Order, Roll Call, and Introductions
- 2. Adoption of Q3 Meeting Minutes
- 3. Subcommittee Overview
- 4. Old Business
 - Pluvial Modeling
 - Flood Depth Threshold
 - Land Cover Data
 - Precipitation Values
 - Fluvial Flood Hazard Data

- 5. New Business
 - Integrated Flood Hazard Scenarios for Planning
 - Flood Hazard Data Reporting
 - Subcommittee Members Discussion
- 6. Public Comment
- 7. Action Items, Scheduling
- 8. Adjourn

10/17/2023

Research, Data, and Innovation Subcommittee

Name	Title	Organization	
Evan Branosky (Chair)	Chief Stormwater Policy Advisor	Virginia Danastment of Environmental Quality	
Dave Davis (Alternate Chair)	Manager of the Office of Wetlands and Stream Protection	Virginia Department of Environmental Quality	
Whitney Katchmark	Principal Water Resources Engineer	Hampton Boods Blanning District Commission	
Ben McFarlane (A)	Chief Resilience Officer	Hampton Roads Planning District Commission	
Norm Goulet	Director of NVRC's Environment and Resiliency Planning	North and Vinninia Doning of Commission	
Rebecca Murphy (A)	Coastal Zone Program Manager	Northern Virginia Regional Commission	
Dr. Jessica Whitehead	Director of the Institute for Coastal Adaptation and Resilience	Old Dominion University	
Carol Considine (A)	Director of Applied Projects, CCRFR	Old Dominion University	
Dr. Karen McGlathery	Director of the Environmental Resilience Institute	University of Virginia	
Dr. Mark Luckenbach	Associate Dean for Research and Advisory Services	Virginia Institute of Marine Science	
Jamie Green	Commissioner		
Rachael Peabody (A)	Director of Coastal Policy, Restoration and Resilience	Virginia Marine Resources Commission	
Randy Owen (A)	Chief of Habitat Management		
Dr. Troy Hartley	Director	Virginia Sea Grant	
Dr. Robert Weiss	Director of the Center for Coastal Studies	Virginia Toch	
Dr. Wendy Stout (A)	Coastal Resilience Extension Specialist	Virginia Tech	
G. Michael Fitch, Ph.D.	Acting Director	Virginia Transportation Research Council	
Mary-Cason Stiff	Executive Director	Wetlands Watch	
John Bateman (A)	Planning Program Director	vvetidilus vvattii	

Research, Data, and Innovation Objectives

1. Inform Development of Flood Hazard Exposure Model.

Using the best available data, provide recommendations to DCR and Dewberry to select pluvial modeling approach (including climate scenarios), advise on the selection of fluvial modeling data and scenarios, and advise on approach to compound flooding joint probability analysis.

2. Inform Inputs to Flood Hazard Risk Assessment.

Based on the flood hazard exposure model developed, advise DCR and Dewberry on how to utilize the flood hazard model for conducting the flood hazard risk assessment.

3. Develop recommendations for future planning.

This includes, but is not limited to:

- Develop a data development plan to fill gaps in advance of future planning processes. Consider research and data products that can meet the state's needs.
- Advise on innovations suited to address flood risks and fill gaps in resilience action for future planning efforts.
 Consider R&D, public-private partnerships, collaborative research.

10/17/2023

Research, Data, and Innovation Subcommittee

5

Subcommittee Actions to Date

- 2023 Q3 Subcommittee Meeting (1st Meeting)
 - · Reviewed Subcommittee Objectives
 - Reviewed Pluvial Modeling Pilot Study
 - Identified and Explored Pluvial Modeling Decision Points
 - Depth Threshold
 - · Land Cover Data
 - Precipitation Values
 - Discussed Fluvial Data for Virginia Flood Protection Master Plan

10/17/2023

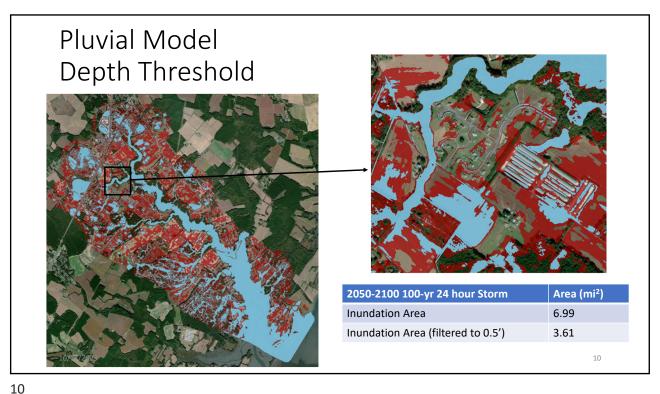
Research, Data, and Innovation Subcommittee

6

6

CRMP Phase II - Plan Development Timeline Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 23 23 24 24 Meetings Sub Sub Sub Sub Sub Sub **Develop Flood Hazard Exposure Model** Data Display (CRWE Update) Research, Data, and Innovation Research, Data, and Innovation Data Collection Flood Hazard Risk Assessment **Project Prioritization Project Prioritization** Project and Initiative Info Collection **Analyze Planned Resilience Actions Project Prioritization** Project Prioritization, Funding Quantify Financial Need for Flood Resilience Funding **Ongoing Stakeholder Outreach and Engagement Outreach and Coordination Develop TAC Subcommittee Recommendations** All Subcommittees

Subcom	• • •	\sim 1 $^{\circ}$	
LILLON	∞ iff α	くんりへる	-
		701120	
JUDGUII		JUILU	ul


2023Q3	CRMP PII - Pluvial Modeling Pilot Study	
202204	CRMP PII - Flood Hazard Data Scenario Planning	
2023Q4	CRMP PII – Flood Hazard Data Reporting	
2024Q1	CRMP PII - Flood Hazard Risk Assessment Methodology	
2024QI	Future Plans - Recommendations	
2024Q2		
2024Q2	Future Plans - Recommendations	
2024Q3	CRMP PII – Flood Hazard Assessment Review	
2024Q3	Future Plans - Recommendations	
2024Q4		
2027Q 1	Future Plans – Final Recommendations	
10/17/2023	Research, Data, and Innovation Subcommittee	8

Old Business

Pluvial Modeling Fluvial Flood Hazard

10/17/2023

Research, Data, and Innovation Subcommittee

Depth Threshold Reference

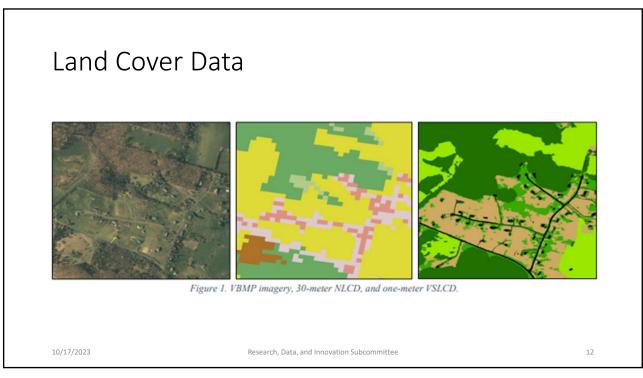
Louisiana Example

Table 1: EBR Parish 1% AEP Model Output Tolerances for Floodplain Conveyance Zones

Component Zone	Model Output Tolerance Used
Depth-based	0.5 feet
Velocity-based	0.5 feet per second (0.25 for Bayou Fountain-Bayou Manchac)
Large Depth-based	4 feet
Final Conveyance Zone	Incorporates all 3 above

(ASCE Louisiana Civil Engineer, August 2023)

FEMA Guidance


"Generally, studies do not continue past areas of minimal hazard where flood depths are less than 0.5 ft"

(FEMA 2020, Guidance for Flood Risk Analysis and **Mapping**

10/17/2023

Research, Data, and Innovation Subcommittee

11

Land Cover Data Alternatives Virginia Statewide Land Cover Dataset • 2013/14 Aerial Imagery • 1-meter resolution • Increased infiltration = reduced flooding Chesapeake Conservancy Land Cover Dataset • 2017/18 Aerial Imagery • 1-meter resolution • Limited to localities at least partially in the Chesapeake Bay Watershed Mosaic High-Resolution Dataset • Chesapeake Bay Watershed = Chesapeake Conservancy Land Cover Dataset • Beyond Chesapeake Bay Watershed = Virginia Statewide Land Cover Dataset

Updated DCR Recommendation

High-Resolution Mosaic Land Cover Dataset:

- Chesapeake Conservancy 2017/2018 Data
- Virginia Statewide Land Cover Data 2013/2014 Data
 - Counties: Greensville, Sussex, Southampton
 - Cities: Emporia, Franklin

Solid colored localities are not included in the Chesapeake – Conservancy data coverage.

Chesapeake Conservancy 2017/2018 Data Coverage

10/17/2023

Research, Data, and Innovation Subcommittee

14

14

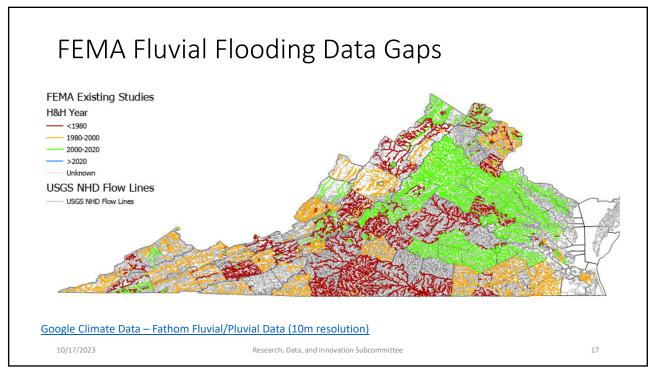
Pilot Study Pluvial Flood Model Scenario Alternatives

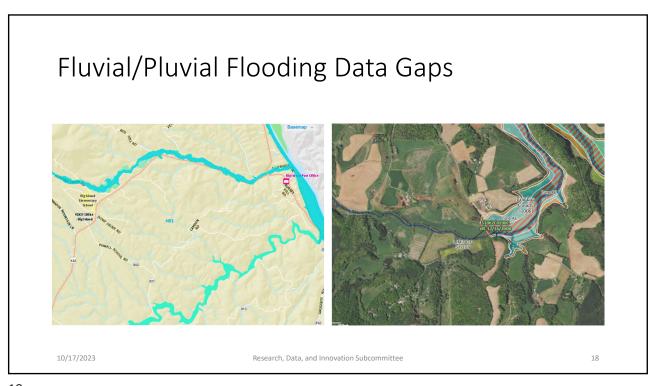
- Intensity: Intervals related to Climate Scenarios
 - 2-hr Duration
 - Range = 1.45 7.63 in
 - 1 8 in @ 0.5-in interval (15+ runs)
 - 6-hr Duration
 - Range = 1.94 10.71 in
 - 1 11 in @ 1-in interval (11+ runs)
 - 24-hr Duration
 - Range = 2.75 16 in
 - 2 16 in @ 1-in interval (15+ runs)
- Frequency
 - 2-, 5-, 10-, 25-, 50-, 100-, 500-year
- + runs needed at tidal boundary for SLR considerations

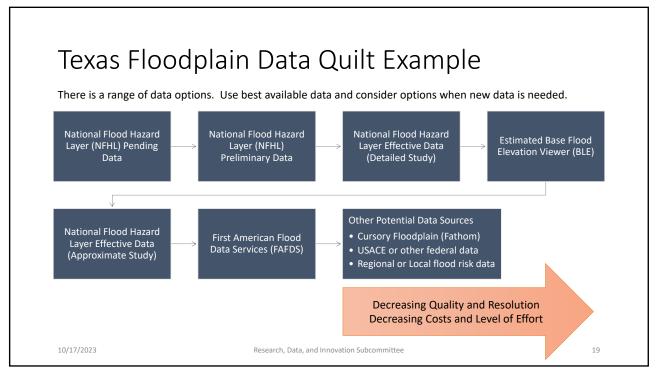
10/17/2023


Research, Data, and Innovation Subcommittee

15


Fluvial Flood Hazard Data


- Existing FEMA Data
 - Pluvial Not Included
 - Fluvial Limited
 - Map shows localities with FEMA HEC models
- Future Federal Data
 - FEMA Data Updates
 - NWS Flood Inundation Models
 - Federal Flood Risk Management Standards Data
- VFPMP 2025
 - · Data Availability


10/17/2023

16

Comments + Questions

10/17/2023

Research, Data, and Innovation Subcommittee

20

New Business

Integrated Flood Hazard Climate Scenarios for Planning Flood Hazard Data Reporting Structure

10/17/2023

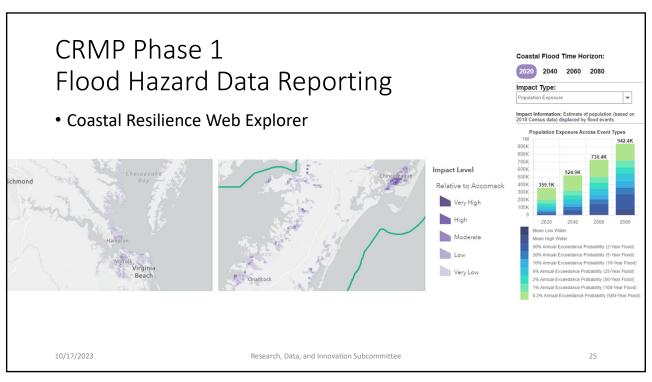
Research, Data, and Innovation Subcommittee

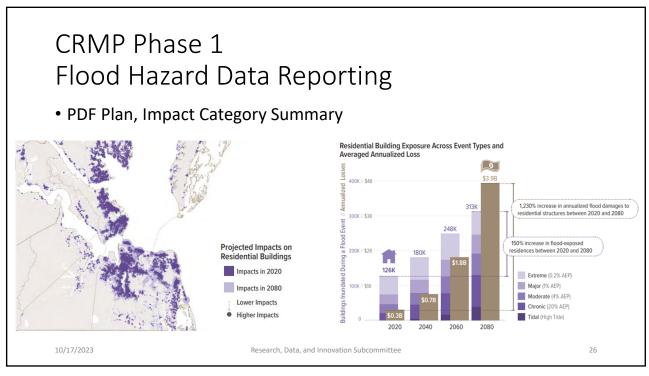
21

Operationalizing Flood Hazard Data

Primary Audiences:

- Planning District Commissions (8)
- Localities (57)
- State Agencies/ Programs (10+)


How might they use the plan?


- Use models and findings as a starting point for additional assessment of asset and programmatic vulnerability
- Incorporate flood hazard exposure models and impacts into other long-range plans
- Leverage models and findings to aid in identifying and prioritizing resilience actions, and developing grant applications
- Identify opportunities for collaboration with other actors toward resilience
- · Justify budgetary requests

10/17/2023 Research, Data, and Innovation Subcommittee 22

22

CRMP Phase 1 **Coastal Flood Time Horizon:** Flood Hazard Data Reporting 2020 2040 2060 Acres of Land Area Inundated Across Flood Event Type 800K • Coastal Resilience Web Explorer 700K 617.4K 600K 521.7K 500K NUNDATION_GRADUATION_2060 400K Mean Low Water 300K 50% Annual Exceedance Probability 100K 20% Annual Exceedance Probability 2020 10% Annual Exceedance Probability Mean Low Water 50% Annual Exceedance Probability (2-Year Flood) 20% Annual Exceedance Probability (5-Year Flood) 10% Annual Exceedance Probability (10-Year Flood) 4% Annual Exceedance Probability (25-Year Flood) 2% Annual Exceedance Probability (50-Year Flood) (500-Year Storm) 1% Annual Exceedance Probability (100-Year Flood) 0.2% Annual Exceedance Probability (500-Year Flood) 10/17/2023 Research, Data, and Innovation Subcommittee

CRMP Phase 2 Flood Hazard Data
Planning and Reporting
How should DCR report and summarize the flood hazard data?
Coastal Resilience Web Explorer
PDF Document

Factors to summarize include:

Flood Hazard

- Coastal
- Pluvial
- Fluvial
- Total/Combined

Return Interval (years)

- Daily (MLW, MHW)
- 2, 5, 10
- 25, 50, 100
- 500

Time Horizon

 Present and Future Conditions (Five across 2020 – 2100)

Impacts

- Qualitative
- Exposure
- Vulnerability
- Risk

10/17/2023 Research, Data, and Innovation Subcommittee

28

Flood Hazard: Available Data Overview

Coastal Flood Hazard

- 2020, 2040, 2060, 2080, 2100
- NOAA 2017 Intermediate-High Sea Level Rise Median Values
- MLW, MHW, 1.5xMTR
- 2, 5, 10, 25, 50, 100, & 500-year Return Interval

Pluvial Flood Hazard

- Atlas 14: "Present"
- MARISA: 2020-2070, 2050-2100; RCP4.5 & RCP8.5
- 2, 6, 24-hr durations
- 2, 5, 10, 25, 50, 100, & 500-year Return Interval

Fluvial Flood Hazard

- Existing Conditions
- No Future Projections
- SFHA 100-yr Floodplain (vector data everywhere. depth-grid some locations)
- 10, 25, 50, 100, 500-yr Return Interval in very limited locations

10/17/2023

Research, Data, and Innovation Subcommittee

29

29

Return Intervals: Severe and Repetitive Flooding

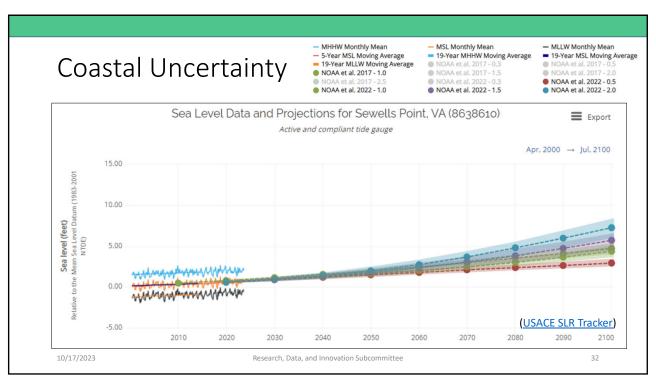
How should DCR qualify and represent "severe and repetitive" flooding in reporting/summarization? Do we need further simplification in some reporting?

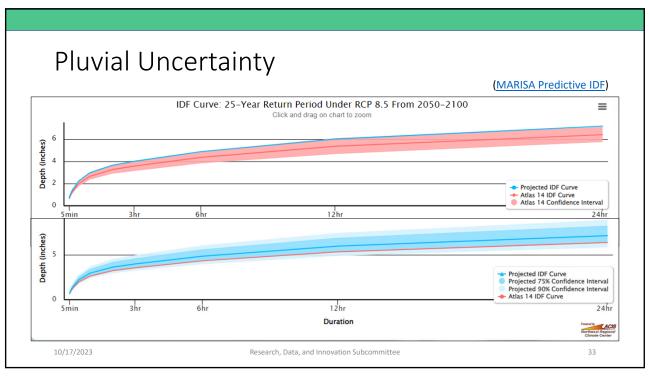
Reference

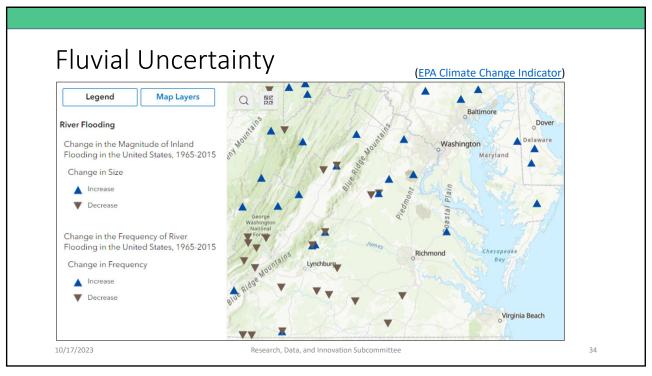
od Event	Annual Exceedance Probability (AEP)	Average Return Interval (Frequency)	Example Storm/Event Type
Tidal	Mean High Water	Inundated Daily	Popotitivo
Chronic	20% AEP	5 years	Repetitive
Moderate	4% AEP	25 years	Severe
Major	1% AEP	100 years	Severe
Extreme	0.2% AEP	500 years	Entrara
			Extreme
10/17/2023	Resear	rch, Data, and Innovation Subcommittee	30

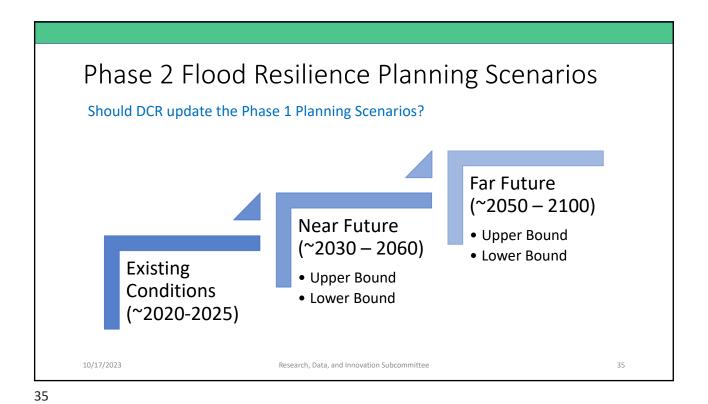
Time Horizon: Resilience Planning Scenarios

Should DCR use the same 20-year time interval planning scenarios used in Phase I, or change the planning scenarios?


Example if using Phase I planning scenarios:


	2020	2040	2060	2080	2100
Coastal	2020 CRMP	2040 CRMP	2060 CRMP	2080 CRMP	2100 CRMP
Pluvial	Atlas14	2020-2070 RCP 4.5	2020-2070 RCP 8.5	2050-2100 RCP 4.5	2050-2100 RCP 8.5
Fluvial	FEMA	FEMA	FEMA +1.0-ft*	FEMA +2.0-ft*	FEMA +3.0-ft*


^{*} Federal Flood Risk Management Standard Data Needed (maybe June 2024)


10/17/2023 Research, Data, and Innovation Subcommittee

31

Phase 2 Flood Resilience Planning Scenarios?

	Existing Conditions ~2020-2025	Near Future ~2030-2060		Far Future ~2050-2100	
		Lower Bound	Upper Bound	Lower Bound	Upper Bound
Coastal	2020 CRMP	2040 CRMP	2060 CRMP	2060 CRMP	2100 CRMP
Pluvial	Atlas14	2020-2070 RCP 4.5	2020-2070 RCP 8.5	2050-2100 RCP 4.5	2050-2100 RCP 8.5
Fluvial	FEMA	FEMA	FEMA +1.0-ft*	FEMA	FEMA + 2.0-ft*

Coastal Flood Hazard Values: NOAA 2017 Sea Level Rise Intermediate-High Median Values Pluvial Flood Hazard Values: Median Values at different RCPs, Upper and Lower Bounds of a Single RCP,...?

*Fluvial Flood Hazard Values: Federal Flood Risk Management Standard Data Needed (maybe June 2024)

10/17/2023 Research, Data, and Innovation Subcommittee 36

CRMP Phase 2 Data Reporting Needs

- Planning Scenario
 - Changes from Phase 1?
- Web Explorer Data Reporting
 - Changes from Phase 1?
- PDF Data Reporting
 - Changes from Phase 1?

- Plan Delivery
 - Data Download for Custom Reporting?
- Post-Plan Technical Support
 - DCR Support for Custom Reporting?

10/17/2023 Research, Data, and Innovation Subcommittee

37

Comments + Questions

10/17/2023

Research, Data, and Innovation Subcommittee

38

Subcommittee Members Discussion

10/17/2023

Research, Data, and Innovation Subcommittee

20

39

Public Comment

If you would like to provide public comment, please let us know using the Chat window.

10/17/2023

Research, Data, and Innovation Subcommittee

Action Items, Scheduling

- Action Item Review
- 2024Q1 Meeting
 - Date/Time
 - Location
 - Agenda Items
 - CRMP PII Flood Hazard Risk Assessment Methodology
 - Future Plans Recommendations

10/17/2023

Research, Data, and Innovation Subcommittee

41