Liming and Liming Materials

What Causes Soil Acidity? Rainfall leaches basic elements (Ca⁺⁺, Mg⁺⁺, Na⁺, K⁺) Acidic parent material granite more acidic than shale or sandstone **Organic Matter** OM decay produce H⁺ Harvest of high yielding crops most significant role

Soil Acidity

 Ca^{2+}

 H^+

pH = - log[H+]

How Lime Reduces Soil Acidity

- A Ca²⁺ ion from the lime replaces two H⁺ ions on the cation exchange complex
- The H⁺ ions combine with OH⁻ to form water
- Soil pH increases because the acidity source (H⁺) has been reduced

Neutralizing Acidity with Lime

How Lime Works

Lime Materials:

Effectiveness is Determined: Particle Size Neutralizing Power

AgLime Mesh Size Specifications: Virginia

Ground Limestone

<u>Mesh</u> 20 60 100

<u>Guar. to Pass</u> 90% 50% 30%

Pulverized Lime 20 100

95% 70%

Neutralizing Power or Calcium Carbonate Equivalency (CCE)

CaCO₃ set to 100.
All other materials compared to it.

Neutralizing Value (CCE) of Pure Compounds				
Forms of Lime	Molecular Weight	Neutralizing Value		
CaCO ₃	100	100		
MgCO ₃	84	119		
Ca(OH) ₂	74	135		
CaO	56	178		

Lime Neutralizing Power Purity:

minimum calcium carbonate equivalency (CCE) of 85%

Properties of various lime materials				
Material	Chemical Formula	CCE	Comments	
Calcitic	CaCO ₃	100	Supplies Ca	
Dolomitic	CaCO ₃ + Ca ⁻ MgCO ₃	109	Supplies Ca & Mg	
Burned	CaO	150-175	Absorbes H ₂ O	
Hydrated	Ca(OH)₂	120-135	quickly, caustic	
Marl	CaCO ₃	70-90	Unconsolidated	

Which Lime Should I Use?

Dolomitic
Calcitic
Hydrated
Burned

Suspension
Pelleted
Ag
Marl

Liming When is the best time to apply?

Apply Lime Well Ahead of Planting

Fig. 9. Change in soil pH with time in various soils as affected by the rate of dolomitic limestone applied (S.M. Nagle, M.S. Thesis, Virginia Tech).