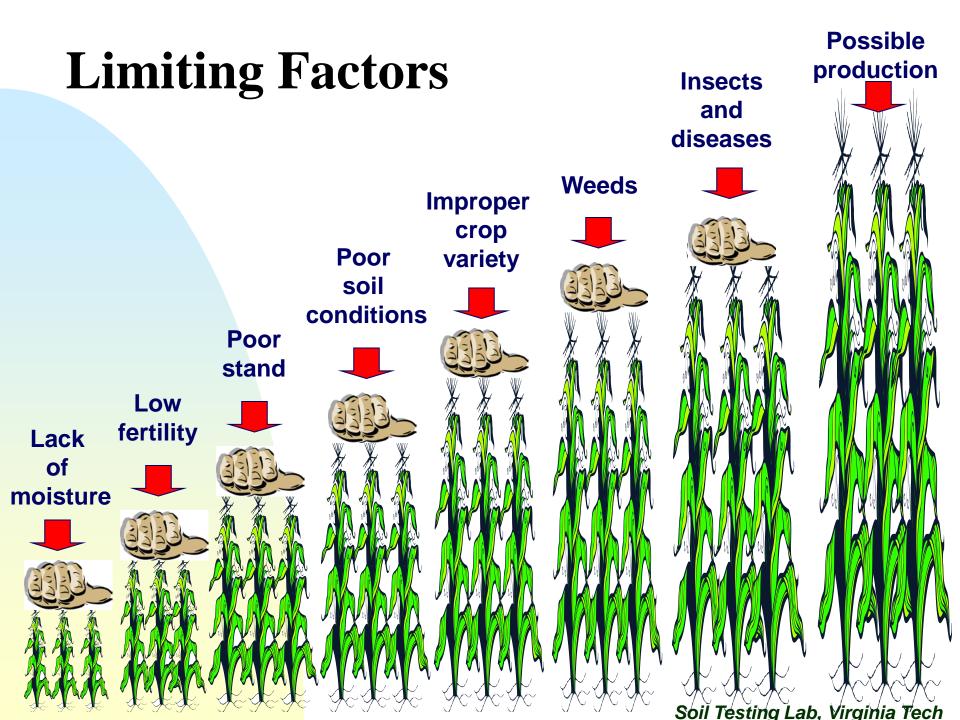
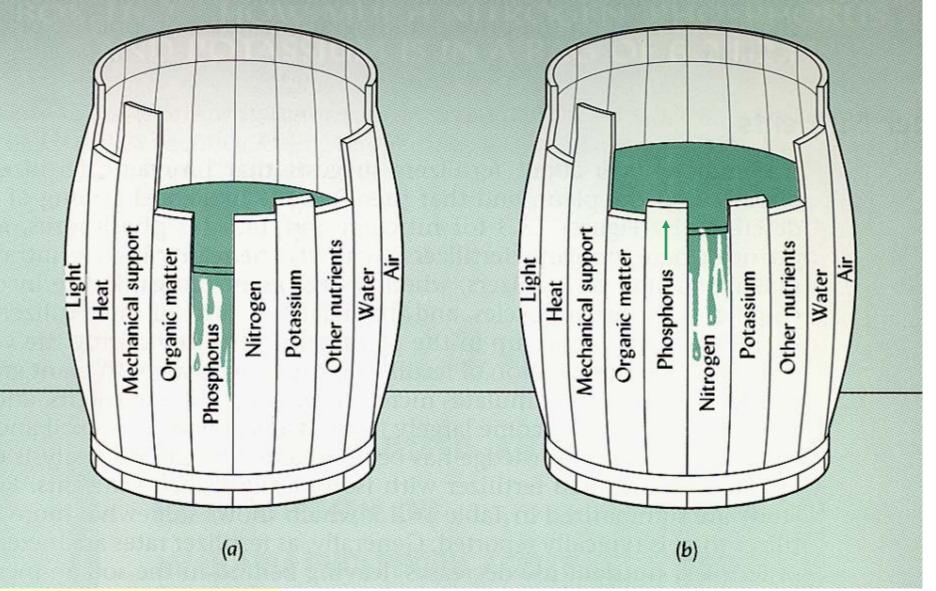
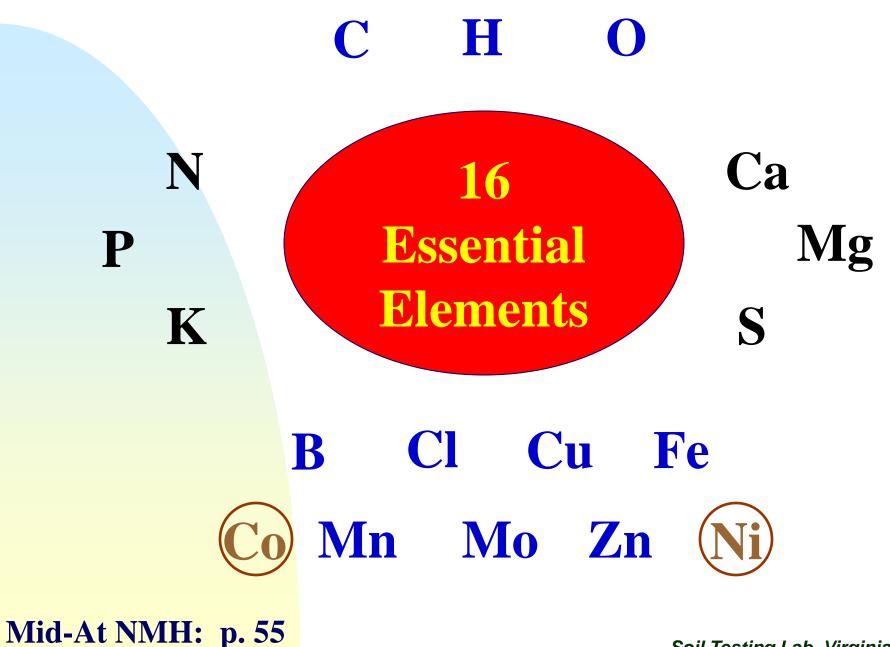
Basic Soil Fertility

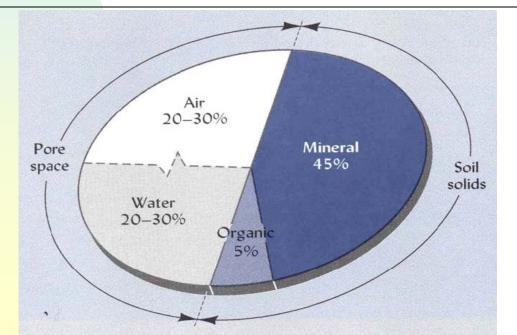

Steve Heckendorn Virginia Tech Soil Testing Lab

Lab Phone: 540-231-6893 Desk Phone: 540-231-9807 Email: <u>soiltesting@vt.edu</u>





Example of Liebig's (1842) law of the minimum.


Yield potential and reproduction are constrained by the essential element (or other Factor) that is the most limiting.

Non-Mineral Nutrients

Non-Mineral Elements Carbon (C) Hydrogen (H) Oxygen (O)

Sources: Air (CO_2 ; O_2) Water (H_2O)

Mineral Nutrients

AJAX

5-10-15

Potassium (K)
Secondary Nutrients
Calcium (Ca)
Magnesium (Mg)
Sulfur (S)

Micronutrients or Trace Elements Boron (B) Chlorine (CI) Copper (Cu) Iron (Fe) Manganese (Mn) Molybdenum (Mo) ◆Zinc (Zn)

MANMH: p. 56

Primary / Major

Nitrogen (N)

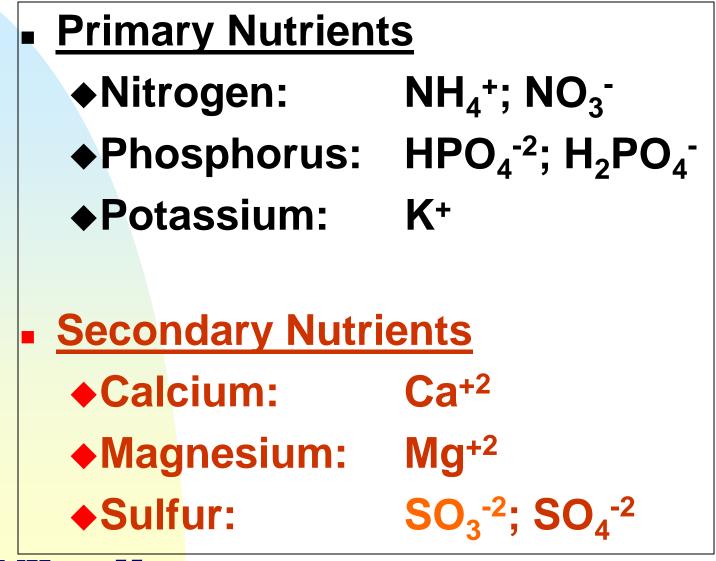
Phosphorus (P)

Nutrients

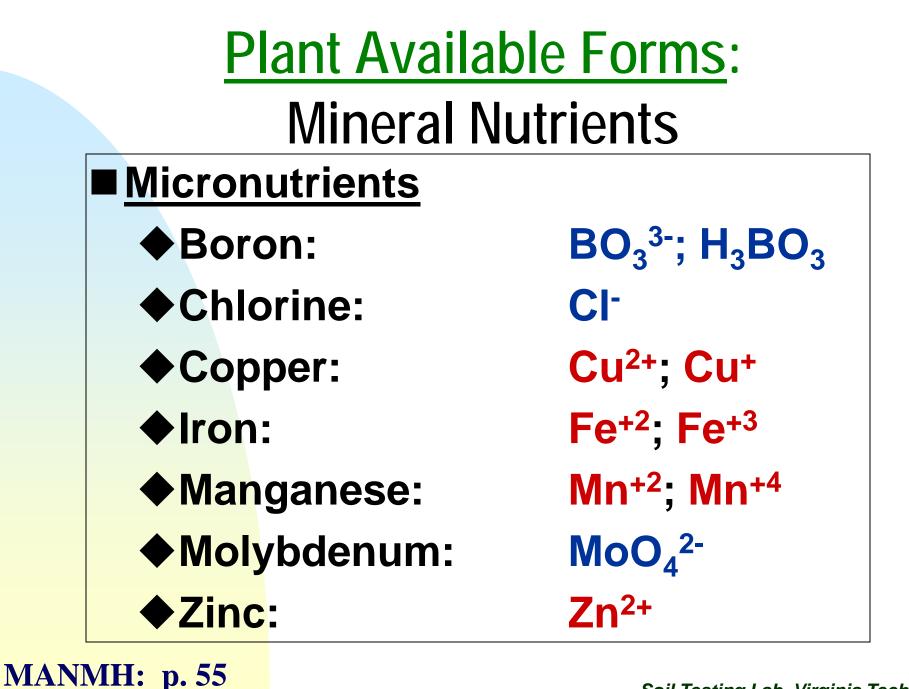
Mineral Nutrients: Alfalfa Hay (4 T/A)

Major Nutrients
 Nitrogen: 180 lb
 Phosphorus: 40 lb
 Potassium: 180 lb

Secondary Nutrients
Calcium: 107 lb
Magnesium: 12 lb
Sulfur: 19 lb


Micronutrients Boron (B) Chlorine (CI) Copper: 0.07 lb Iron (Fe) Manganese: 0.43 lb Molybdenum (Mo) ◆Zinc: 0.41 lb

Plant Available FormsNon-Mineral NutrientsElement Available forms•Carbon:CO2•Hydrogen:H+, OH-


Oxygen: O_2

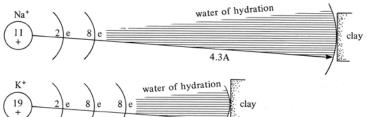
MANMH: p. 55 www.mawaterquality.org/Publications/pubs/manhcomplete.pdf

Plant Available Forms: Mineral Nutrients

MANMH: p. 55

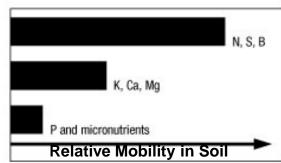
Normal Sources of Plant Nutrients

- Nitrogen (N) Soil/Fertilizer
- Phosphorus (P), Potassium (K) Soil/Fertilizer
- Calcium (Ca), Magnesium (Mg) Soil/Lime
- Sulfur (S) Soil


Micronutrients (boron, chlorine, copper, iron, manganese, molybdenum & zinc) - Soil

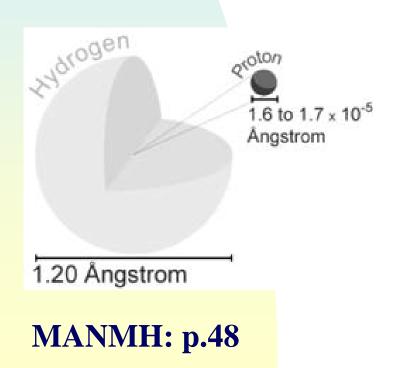
Supplement with Fertilizers & Amendments

Nutrient Mobility in Soils


Depends on a number of factors

- Charge of the ion
- Size or diameter of ion

- High charge + small diameter = high retention
- Type of charge:
 - Anions (e.g. NO₃⁻) in general leach
 - more easily than cations


Phosphate is an exception

MANMH: p.48

Nutrient Mobility in Soils

Degree or strength of retention: (H⁺)Al³⁺ >> Ca²⁺ > Mg²⁺ > K⁺=NH⁴⁺ > Na⁺

Translocation of Nutrients in the Plant

- Mineral nutrients taken up from the soil are absorbed through the root system
- Nutrients differ in their mobility in the plant:
- Mobile Nutrients are elements that can move within the plant, and the plant has the ability to translocate the element from one part of the plant to another
- Mobile Nutrients Generally move from older parts of the plant to the growing point to permit proper plant growth and development

Translocation of Nutrients in the Plant

Mobile Nutrients:

Nitrogen Phosphorus Potassium Magnesium Sulfur (somowhat in

Sulfur (somewhat immobile)

Immobile Nutrients:

Calcium	Manganese
Boron	Zinc
Copper	Molybdenum
Iron	Chlorine (mobile)

MANMH: p. 60-63

Translocation of Nutrients in the Plant

- Visual diagnosis of nutrient deficiencies is risky
- Visual diagnosis can be confusing due to confounding effects of more than one deficient nutrient


Should combine with soil and tissue testing before investing in additional fertilizer applications

MANMH: p. 59

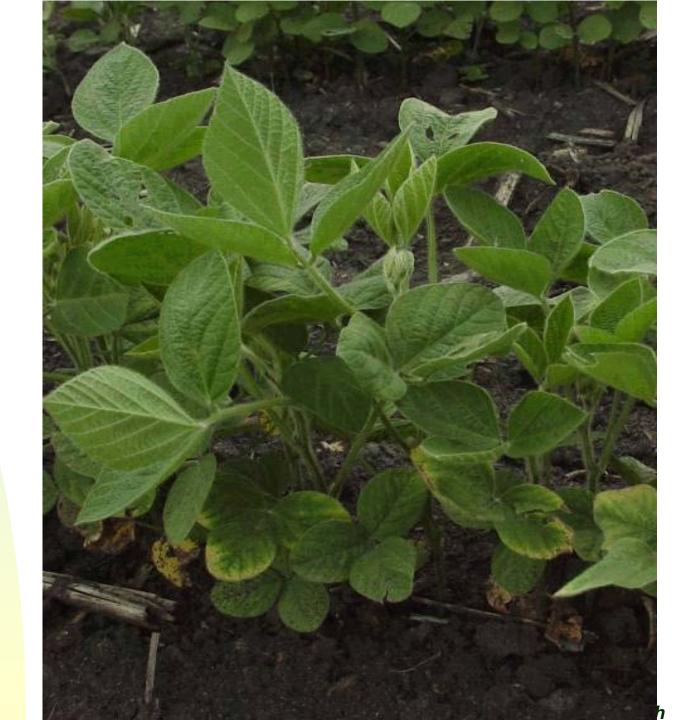
IPNI's \$30 CD (item # 82-8290) on Nutrient Deficiency Images http://store.ipni.net

MANMH: p. 60-63

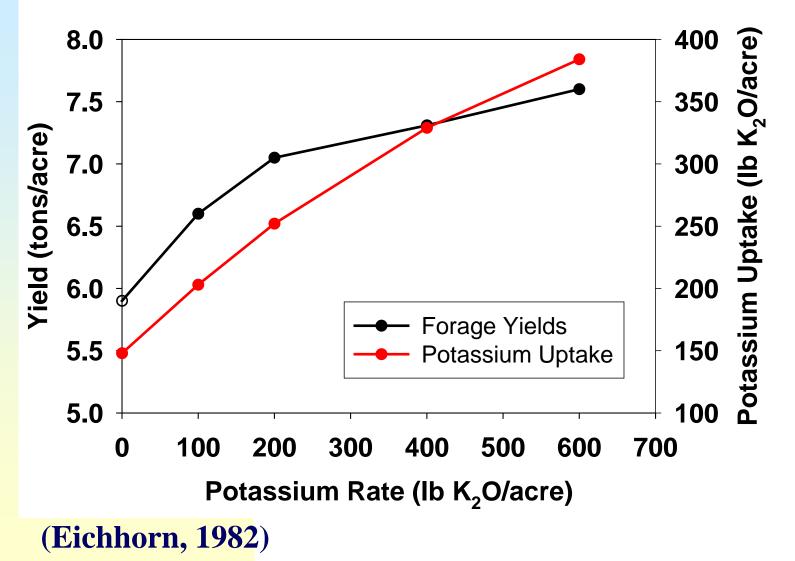
International Plant Nutrition Institute

PNI

www.plantmanagementnetwork.org



Potassium


Potassium Deficient Corn

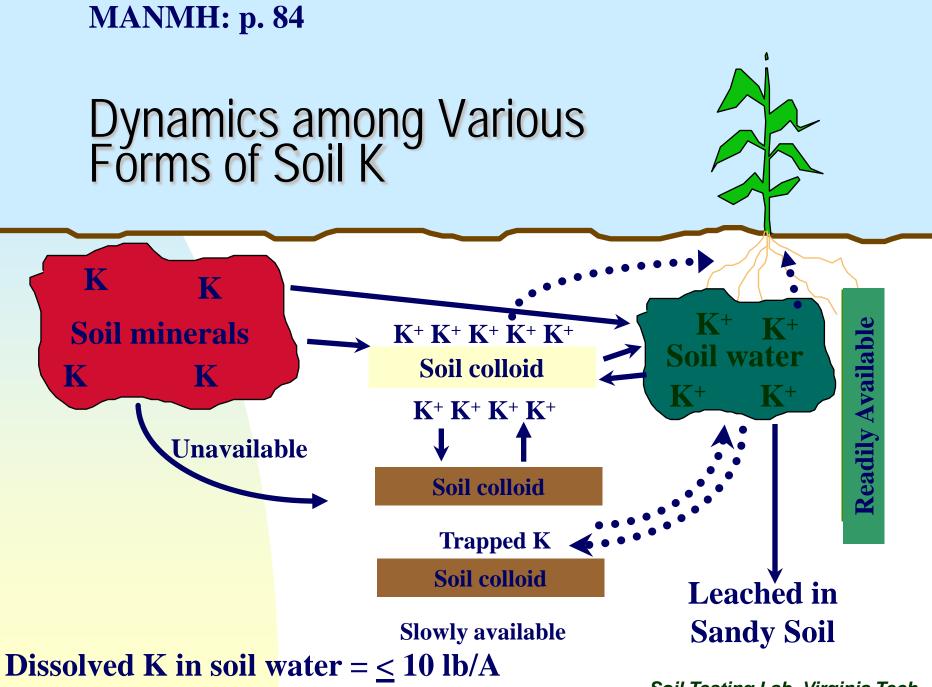
K Deficient Soybean

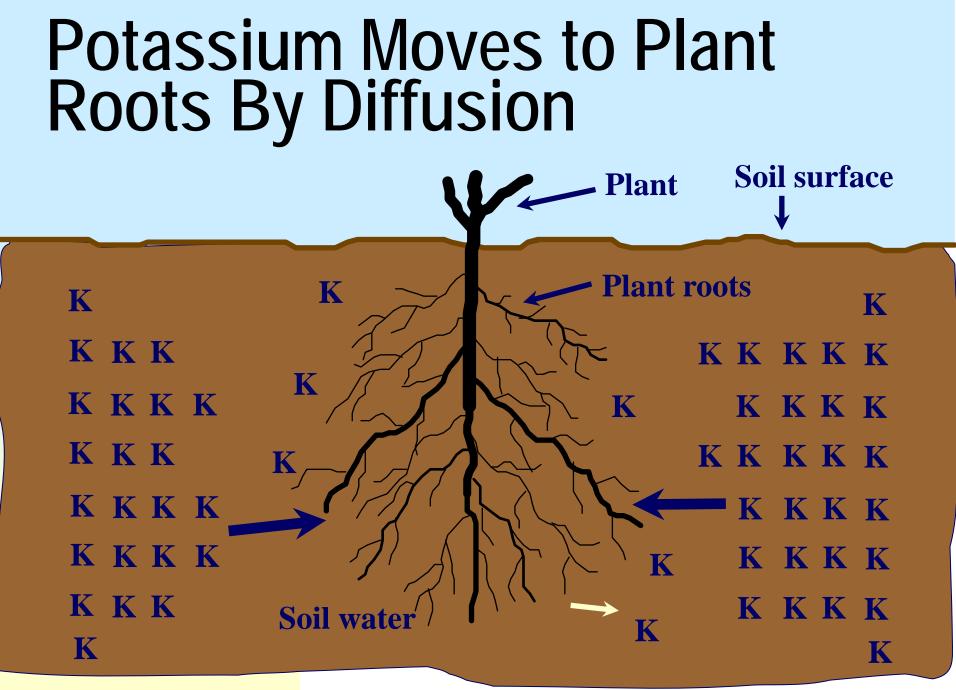
Potassium Yield Response

Coastal Bermudagrass

Potassium

Taken up by the plant as K⁺


- Does not form organic compounds in the plant
- Is vital to photosynthesis and protein synthesis
- Reduces Lodging
- Increases winter hardiness
- Increases
 Increase
 Increase</


MANMH: p. 82-84

Potassium in Soils

Soils may contain 20,000 lb/A of K, or more

Only a small amount is available during the growing season

Potassium Timing & Placement

- K fertilizers are completely water-soluble & have a high salt index – placement too close to seed or transplants can result in plant injury
 - Sandy soils
 - Dry soils
 - High fertilizer rates
 - 3"x 2" placement

Row placement of K: more efficient than broadcast application for low K rates and low soil K levels

Potassium Fertilizers

	Chemical	K ₂ O
Fertilizer Material	Formula	(%)
Potassium Chloride (Muriate of Potash)	KCl	60-62
Potassium Sulfate (Sulfate of Potash)	K ₂ SO ₄	50-53
K-Mg-Sulfate (Sulphate of Potash-Magnesia)	K ₂ SO ₄ [·] 2MgSO ₄	22
Potassium Nitrate	KNO ₃	44

MANMH: p. 193-194

Secondary Nutrients: Ca, Mg & S

- Includes Ca, Mg & S
- Just as important to plant nutrition as primary nutrients – some plants may not take up as much
- Commonly applied as soil amendments or applied along with materials which contain primary nutrients.

MANMH: p. 85

Secondary Nutrients: Ca, Mg, S

		Pounds in total Crop		
Crop	Yield level	Ca ¹	Mg	S
Alfalfa	8 tons	175	40	40
C. Bermudagras	s 8 tons	52	26	44
Corn	160 bu	39	52	27
Cotton	1000 lb lint	14	23	20
Grain Sorghum	8000 lb	60	40	39
Peanuts	4000 lb	20	25	21
Soybeans	60 bu	26	24	20
Tomatoes	40 tons	30	36	54
Wheat	60 bu	16	18	15

¹ Estimated

Soil Fertility Manual: Potash Phosphate Institute

Soil Ca & Mg

Calcium & Magnesium have similar behavior in soils:

◆ Cations: Ca⁺² & Mg⁺²

 Mobility: relatively low compared to other ions (i.e., leaching losses - relatively low)

Quantities: Soils usually contain less Mg than Ca

Mg is not adsorbed as tightly as Ca

Most parent materials contain less Mg than Ca

Virginia Tech Soil Test Calibration for Calcium & Magnesium (Extractant = Mehlich I)

Soil Test	STCa	STMg
Rating	lb/A	lb/A
L-	0-240	0-24
L	241-480	25-48
L+	481-720	49-72
М-	721-960	73-96
\mathbf{M}	961-1200	97-120
$\mathbf{M}+$	1201-1440	121-144
H-	1441-1680	145-168
Η	1681-1920	169-192
\mathbf{H} +	1921-2160	193-216
VH	2161-2400+	217-240

Soil Ca & Mg

- Calcium: Soil Ca < 0.1 30% (NC: 0.7-1.5%)</p>
 - Mineral Ca: (very slowly available)
 - calcite, dolomite, apatite & Ca-feldspars
 - ◆Exchangeable Ca (←↓available)
 - ♦Soil Solution Ca: Ca⁺²
- Magnesium: Soil Mg 0.1 to 4%
 - Mineral Mg: (very slowly available)

- dolomite, biotite, hornblende & chlorite
- ♦Exchangeable Mg (←↓available)
- Soil Solution Mg: Mg⁺²



Soil Testing Lab, Virginia Tech

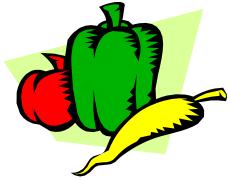
Available Soil Ca & Mg

{Ca usually = 70-90% of CEC}

Benefits of Calcium

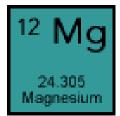
Reduces soil acidity:

Lowers solubility and toxicity of manganese and aluminum


 Improves root growing conditions: Microbial activity Molybdenum availability Availability & uptake of other nutrients
 MANMH: p. 69

Calcium: Deficiency

- Poor root growth: Ca deficient plants turn black and rot
- Except for peanuts & some vegetables, Ca deficiency seldom shows up in the field.



Magnesium

Magnesium: Deficiencies

Most Frequently Occur On: Coarse Texture Soils Acid Soils Areas of High Rainfall

Magnesium: Deficiencies

- Accentuated by:
- High Ca, Low CEC
- High K Rates
- High Available Ammonium-N

Calcium Sources

- In general, Ca deficient soils are acid
- Good means of correcting low pH & Ca deficiencies is to apply lime
- Calcitic and dolomitic limestone are excellent sources

MANMH: p. 70

Calcium Sources

Material	Percent Ca	Neut. Value
Calcitic Limestone	32	85-100
Dolomitic Limestone	22	95-108
Basic Slag	29	50-70
Gypsum	22	None
Marl	24	15-85
Hydrated Lime	45	120-135
Burned Lime	55	150-175
Single superphosphate	18 - 21	
Triple superphosphate	12 - 14	
Calcium Nitrate	19	
Animal/Municipal Waste	2 – 5	Variable

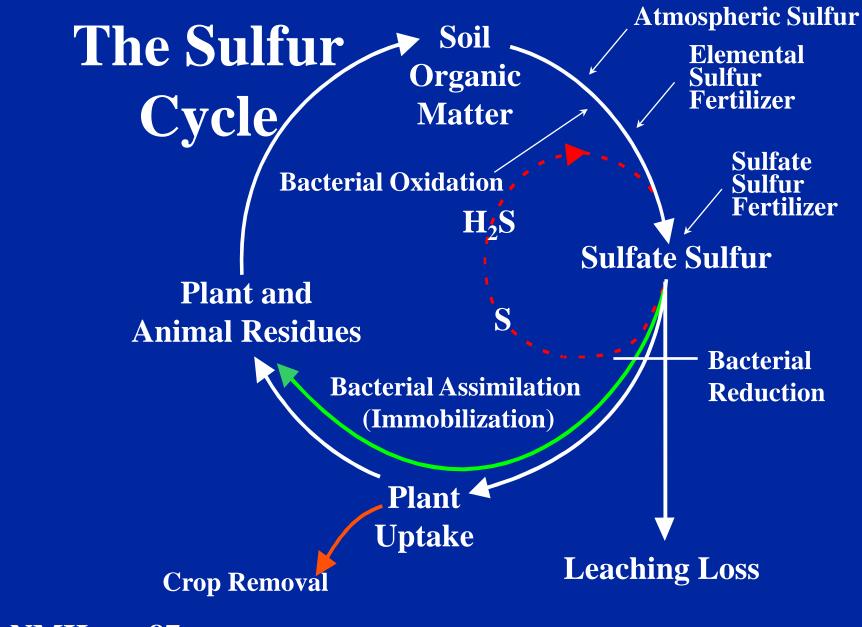
MANMH: p. 194-195

Magnesium Fertilizers

Material	Percent Mg	
Dolomitic limestone (Mg Carbonate)	3-12 slow	yly
Magnesia (Mg oxide)	55-60 stow	adie
Basic Slag	3	
Magnesium sulphate (Epsom salts)	9-20 rapid availa	aly able
K-Mg-Sulphate	11	
Magnesium Nitrate	16-19	
Magnesium Chloride	8 - 9	

MANMH: p. 194-195

Sulfur (PPI)



Soil Sulfur

Form available to plants: ◆Inorganic Sulfate-Sulfur: SO²⁻ Negative Charged Not attracted to soil clay or OM Sulfate - Subject to leaching Sulfate often accumulates in subsurface horizons (Positively charged soil colloids) Sulfate - Adsorbed to clay with Fe & Al oxide coatings **Soil S - Most is bound in soil organic matter (>90%)**

MANMH: p. 86

MANMH: p. 87

Factors Affecting Availability

- Crop to be grown
- Soil Texture
- Soil organic matter

Sulfur Fertilizers

Fertilizer Material	Chemical Formula		
Ammonium Sulfate	$(\mathbf{NH}_4)_2\mathbf{SO}_4$	24 raj	oidly ilable
Ammonium Thiosulfate	$(NH_4)_2S_2 O_3 SH_2O_3$	26 ^{ava}	nable
Potassium Sulfate	K_2SO_4	18	
K-Mg-Sulfate	K ₂ SO ₄ ·MgSO ₄	22	
Elemental Sulfur	S	>85 slo	owly ilable
Gypsum	CaSO ₄ ·H ₂ O	12-18	inabic
Magnesium Sulfate	MgSO ₄ ·7H ₂ O	14	

MANMH: p. 194-195

Micronutrients

Zn Deficient Corn

Mn Deficient Soybean

Micronutrients

Mn Toxic Soybean

Micronutrient Needs - VA

- Manganese
 - Soybean & Peanuts
- Boron
 - ♦ Alfalfa
 - Certain Vegetables:
 - Asparagus, Broccoli, Peppers, White Potatoes, etc.

Nanzanes

- Cotton
- Peanuts
- Zinc
 - Corn, Small Grains & Grain Sorghum
- Molybdenum
 - Alfalfa
 - Soybeans
 - Broccoli & Cauliflower

Soil Test Notes are on-line at www.soiltest.vt.edu. See Note #4

WirginiaTech

Department of

Crop and Soil Environmental Sciences

People Pages Search Virginia Tech A to Z Index Directory

Trace Elements

Greg Mullins, Extension Nutrient Management Specialist, Virginia Tech Steve Heckendorn, Soil Test Laboratory Manager, Virginia Tech

Virginia Cooperative Extension

Lab facts

» Started operations in 1938.

» Over 50,000 samples are tested each year.

More than a third of garden

Soil Test Note #4 PUBLICATION 452-704

QUICKLINKS

Virginia Soil Testing Lab

Testing Process and Fees

Sampling Instructions

Iseful Publications

Other lab information

Have Questions?

Mission

The Virginia Tech Soil Environmenta university researc to determine the growth. Accurate making economic realized through (and may be dama

Operation

Introduction

Your Soil Test Report indicates one or more trace elements are needed. Select the appropriate sections in this note for information on the recommended trace elements and the specific rates and methods of application. Apply only those trace elements that are recommended, and only at the recommended rates!

Zinc (Zn)

Zinc deficiency has been found on corn, small grains, and grain sorghum in Virginia. If your Soil Test Report indicates a need for zinc, select from one of the following application methods: in succeeding crops, and you will need to apply zinc each year these crops are planted.

3. Sideband placement for corn and grain sorghum. Zinc can be applied with the starter fertilizer at planting time. Where this method is used, apply 6 to 8 pounds of elemental zinc per acre using either zinc sulfate or zinc oxide as the source, or 1 to 2 pounds per acre when using zinc chelates as the source. This method of application will not correct the deficiency for succeeding crops, but would need to be applied each year these crops are grown.

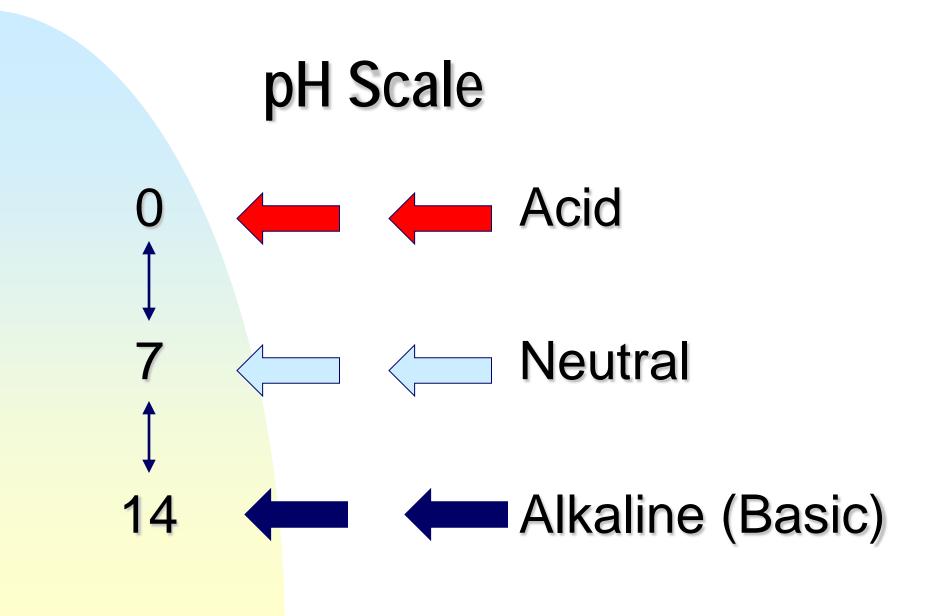
Application of Micronutrients

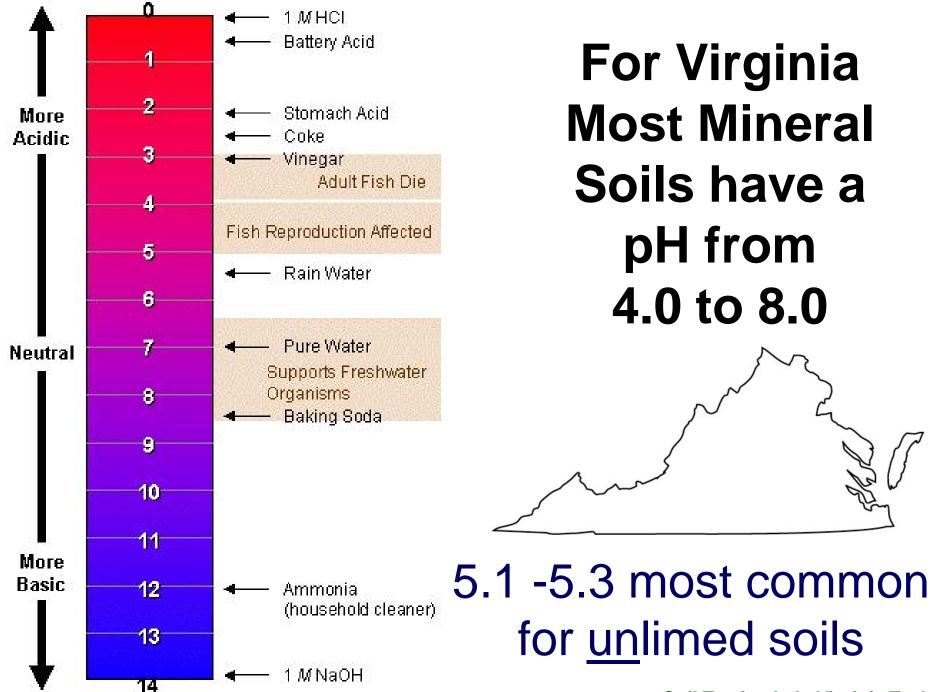
- Can be soil or foliar applied
- Sulfates, chelates & most organics are soluble and better adapted for foliar applications as compared to fritz & oxides
- Foliar applications sufficient to meet crop needs
- Solution fertilizers compatibility problems with P

Virginia Tech

Application of Micronutrients

 Micronutrients can be added to commercial fertilizers and/or mixed into bulk blends


- Band applications of fertilizer materials containing micronutrients increases
 efficiency
- Over applications may result in toxic soil levels



Selected Micronutrient Sources

Material	Element	% Element
Borax	B	11.3
Solubor	B	20.0
Boron <mark>Frits</mark>	B	2.0 - 6.0
Iron <mark>Sulfate</mark>	Fe	19 – 23
Iron Frits	Fe	Variable
Iron Chelates	Fe	5 – 14
Manganease <mark>Sulfate</mark>	Mn	26 - 28
Manganese Chelates	Mn	12
Zinc Sulfate	Zn	23 – 35
Zinc Chelates	Zn	9 – 14
Sodium Molybdate	Mo	39 – 41

MANMH: p. 195-196

Desired Soil pH

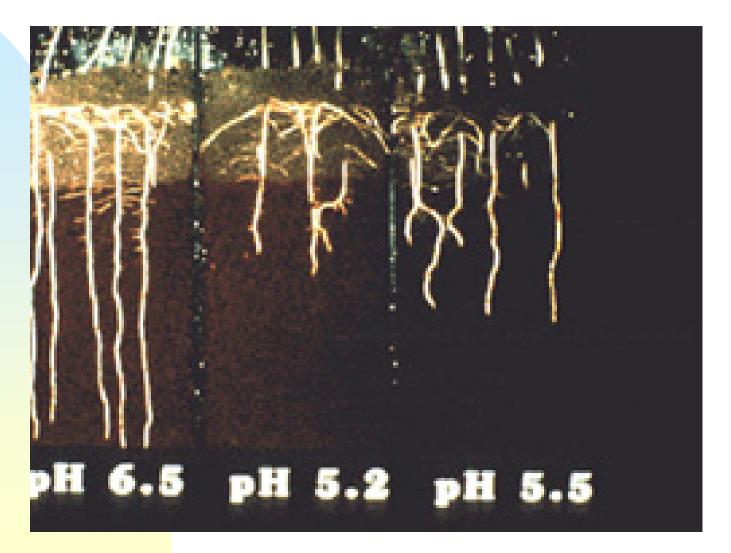
Critical Levels: <5.0 – 5.5: Non-Leguminous crops</p> **Corn:** 6.2 Effect of pH on Al³⁺in solution Tobacco: 5.8 30 ♦ <6.5: Legumes</p> Alfalfa: 6.8 5 0

3.5

MANMH: p. 66-68

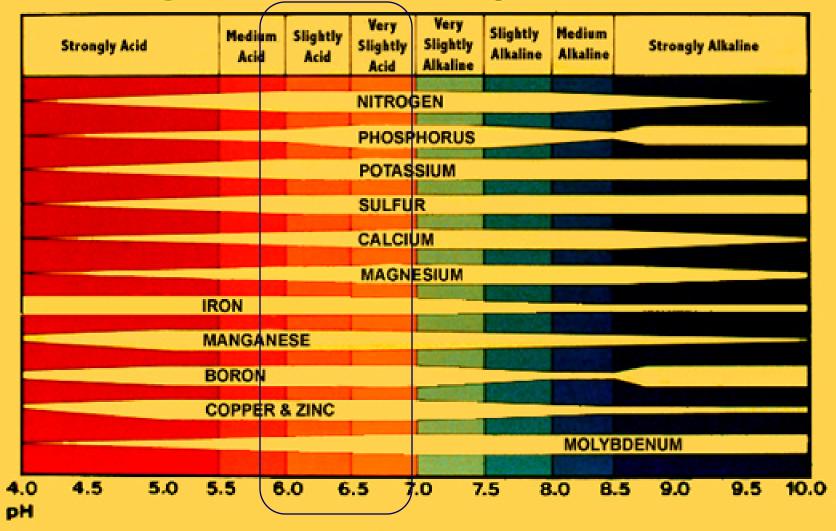
Soil Testing Lab, Virginia Tech

5


4.5

Soil pH

5.5


6

Root Growth Restricted by Al

MANMH: p. 171

How Soil pH Affects Availability of Plant Nutrients

VCE's web site \rightarrow www.ext.vt.edu

60

● VCE ● People ● Office By ZIP Google[™] Custom Search

Virginia Cooperative Extension

Home Publications

Publications & Resources

Local Offices & Research Ctrs.

s. Program Areas

5 News

WirginiaTech

is Calendar

Invent the Future

About

Agriculture and Natural Resources >

Agriculture and Natural Resources

Advice You Can Trust

Agriculture and natural resources (ANR) programs help sustain the profitability of agricultural and forestry production and enhance and protect the quality of our land and water resources. Virginia Cooperative Extension strives to improve the well-being of Virginians and increase producers' profitability through programs that help put research-based knowledge to work in people's lives.

Meeting Diverse Needs

Extension faculty -- agents and specialists -- work together to meet the ever-changing needs of the agriculture industry. Follow the links to the right to explore the work we are doing in a particular area.

Extension agents serve as important links to a broad base of research, much of which occurs at 13 agricultural research and Extension centers (ARECs). Located throughout the commonwealth, these field laboratories allow scientists to tailor projects to Virginia's varied soil, vegetation, climate, and communities.

Drawing on Local Expertise

Extension program involve many partners to assure that our programs are relevant and responsive to the issues of our communities. Some of those partners include:

ANR Topic Areas

- Agricultural Business, Finance, & Marketing
- Agricultural Systems
- Animal Agriculture
- Crops & Soils
- Environment & Natural Resources
- Lawn & Garden
- Nursery, Greenhouse, & Turf
- Specialty Agriculture
- What's Happening in ANR Today (See Topic Calendars)
- Certifications & Trainings