

# Nitrogen & Phosphorus

Rory Maguire Virginia Tech

Phone: 540-231-0472 Email: rmaguire@vt.edu

### Questions

- Yield expectations and therefore nutrient requirements are not the same for all fields – why?
- Nutrient management harder on a dairy farm than a cash grain farm using only inorganic fertilizer - why?
- In VA, large dairy, poultry, swine farms under nutrient management regulations but grain farms not - why?
- Predict plant available P and K by soil testing, but not reliably N - why?
- If we know 55ppm P in soil is adequate for crop growth, why do some soils test >500ppm?

### Typical Crop Nutrient Removal

|                      | Lbs per unit of yield |          |                  |
|----------------------|-----------------------|----------|------------------|
| Crop (unit yield)    | N                     | $P_2O_5$ | K <sub>2</sub> O |
| Corn grain (bu)      | 1.1                   | 0.38     | 0.27             |
| Corn silage (ton)    | 7.65                  | 4.2      | 8.3              |
| Wheat (bu)           | 1.25                  | 0.51     | 0.61             |
| Soybean (bu)         | 3.75                  | 0.89     | 1.42             |
| Tall grass hay (ton) | 53.3                  | 16       | 52               |
| Alfalfa (ton)        | 45                    | 14.5     | 45               |

### **N & P Environmental Effects**

- Both N and P can contribute to water quality problems
  - Groundwater (10 ppm NO<sub>3</sub>-N limit)
  - Surface water: eutrophication
    - N Primary concern in estuaries (Chesapeake Bay)
    - P Primary concern in fresh water

### Nitrogen Forms

• Inorganic:  $-NH_4^+, NO_3^ -NO_{2}, N_{2}, NH_{3}, N_{2}O$  Organic Sources: -Amino acids and sugars, proteins, and other complex compounds **– Decomposition can produce plant** available N



# **Nitrogen Transformations**

- Mineralization: Conversion of organic-N (R-NH<sub>2</sub>) to inorganic-N
  - $R-NH_2 \xrightarrow{Ammonification} > NH_3 + H_2O \rightarrow NH_4^+ + OH^-$

Depends on carbon: nitrogen ratio (C:N) of amendment (Mineralization when C:N < 20:1).

[Soil Organic Matter: 97 to 99% of total soil N]

# **Nitrogen Transformations**

 Nitrification: Conversion of ammonium (NH<sub>4</sub>+) to nitrite (NO<sub>2</sub>-) and to nitrate (NO<sub>3</sub>-) by soil bacteria

 $2NH_4^+ + 3O_2$  *Nitrosomonas*  $2NO_2^- + 2H_2O + 4H^+$  $2NO_2^- + O_2$  *Nitrobacter*  $2NO_3^-$ 

 Nitrate: plant uptake, denitrification, leaching, or erosion/runoff 40 .4.

Soil Factors Affecting Mineralization & Nitrification: DH Moisture Temperature Aeration

### **Soil Acidification via Nitrification:**

- Nitrification of NH<sub>4</sub><sup>+</sup> generates H<sup>+</sup> cations, which reduce soil pH.
- Use of ammonium-based fertilizers will decrease soil pH (nitrification).
- Significant cause of liming needs.

# **Nitrogen Transformations**

 Immobilization: Conversion of inorganic-N to organic-N

 $NH_4^+ \text{ or } NO_3^- \longrightarrow \text{ organic N compounds}$ 

 Depends on the C:N ratio of the soil amendment (Immobilization when C:N > 30:1)

# **Nitrogen Transformations**

 Ammonium Adsorption: Retention of positively charged ammonium ions on the surface of soil colloids (clay)



### • Fixation:

Entrapment of ammonium lons between the platelets of certain clay minerals

# Losses of Nitrogen

- Volatilization: Gaseous loss
- Leaching: Downward soil transport
- Runoff: Transport across landscape
- Crop removal: Plant uptake

# **Nitrogen Transformations**

- Ammonia Volatilization:  $NH_4^+ + OH^- \longrightarrow NH_3 + H_2O$
- NH<sub>3</sub> = Ammonia Gas
- Ammonia losses: High pH & surface application of manure or ammoniacal (urea) fertilizer
- Urea Hydrolysis:

 $\begin{array}{c} \mathsf{CO}(\mathsf{NH}_2)_2 + \mathsf{H}^+ + 2\mathsf{H}_2\mathsf{O} \xrightarrow{\mathsf{Urease}} 2\mathsf{NH}_4^+ + \mathsf{HCO}_3^-\\ \mathsf{NH}_4^+ \longrightarrow \mathsf{NH}_3 + \mathsf{H}^+ \end{array}$ 

# Nitrogen Transformations

### Denitrification:

Reduction of nitrate (NO<sub>3</sub><sup>-</sup>) to gaseous forms of N by soil bacteria



- Occurs under anaerobic conditions bacteria use nitrate as electron acceptor
- High/alkaline soil pH favors



Leaching Losses of Nitrate-N

### **Factors affecting leaching of N**

- Heavy fertilizer N applications on sandy soils
- Overapplication of manure/biosolids
- Improper timing of application
- Poorly designed or non-existent soil conservation measures
- Periods of exceptionally heavy rain



Fig. 1. Dry weight and N uptake by corn (Hanway, 1963).

# **Nitrogen Transformations**

- Biological Nitrogen Fixation: Conversion of atmospheric N (N<sub>2</sub>) to an organic form of N.
- Symbiotic (legumes) and free living organisms

### $N_2 + 8H^+ + 6e^- \longrightarrow 2NH_3 + H_2$

# **Residual N credits from legumes**

| Crop        | % Stand                             | Description    | <b>Residual N</b> |  |
|-------------|-------------------------------------|----------------|-------------------|--|
|             |                                     |                | Lbs/A             |  |
| Alfalfa     | 50-75                               | Good (>4 t/A)  | 90                |  |
|             | 25-49                               | Fair (3-4 t/A) | 70                |  |
|             | <25                                 | Poor (<3 t/A)  | 50                |  |
| Red Clover  | >50                                 | Good (> 3t/A)  | 80                |  |
|             | 25-49                               | Fair (2-3 t/A) | 60                |  |
|             | <25                                 | Poor (<2 t/A)  | 40                |  |
| Hairy Vetch | 80-100                              | Good           | 100               |  |
|             | 50-79                               | Fair           | 75                |  |
|             | <50                                 | Poor           | 50                |  |
| Peanuts     |                                     |                | 45                |  |
| Soybeans    | 1/2 lb N/bushel of yield, or 20 lbs |                |                   |  |

**DCR, Standards &** Criteria, page 108

# Phosphorus



# Forms of Soil P

### Orthophosphate



 $HPO_4^{-2}$ 

 $H_2PO_4^-$ 

### **Phosphorus Transformations**

• Organic P (30-50%)



- Inorganic P fairly insoluble
- Adsorbed Inorganic
- Precipitates





### **Soil Phosphorus**

- Total soil P: 800-1600 lb/acre
  50 to 70% in inorganic forms
- Low solubility: Mostly unavailable for plants
- Roots absorb P from the soil solution:
   <0.01 to 1 ppm (0.2 ppm adequate for plants)</li>
- Soil solution must be replaced continuously



### P Adsorption: Oxide Surface Labile Soil P



#### Aluminum Oxide

Rory Maguire, Virginia Tech



Hydroxyl: OH<sup>-</sup>

AI = Aluminum





### P Adsorption: Oxide Surface

#### Phosphorus *fixation*

Hydroxyl: OH-

Water



#### Aluminum Oxide

### **Available Soil Phosphorus**





# **Factors Affecting P Availability**

- Amount and type of clay: High clay soils retain more P Kaolinitic & oxide clays retain more P
- Time of application: Longer time of contact increases the chances of fixation
- Phosphate status of soil: More soil P ---> more available

# **Factors Affecting P Availability**

- Acid soils (low pH): Availability is low because P is "tied up" as iron and aluminum phosphates
- Alkaline or basic soils (high pH): Availability is low because P is "tied up" as calcium phosphates
- Minimum P fixation: Minimum P fixation occurs between pH 5.5 to 6.5



#### The Hills and Valleys of Phosphorus Fixation

Rory Maguire, Virginia Tech

### **Phosphorus & Water Quality**

# CHESAPEAKE BAY WATERSHED

Be a friend to the Chesapeake

TRACK OF

The Chesapeake Bay Commission

e, Virginia Tech

### N Movement



### P Movement



#### **Nitrate Leaches!!**

#### **P** Leaches Slowly

### **Pathways of Transport**





### How Important is Soil Erosion?





How important is soil erosion? How important is soil test P?

# Phosphorus applied as poultry litter (4t/acre) versus crop removal





**Extractable nutrient (lb/acre)** 

#### Frederick Series, Shenandoah Valley







"Nutrient balance on a cash grain farm is simple"



"A livestock farm is much more complex. We often <u>cannot</u> balance inputs of feed and fertilizers with outputs. This results in excess nutrients that can be lost to air or water or build up in soils.



### Manure P Surplus: (Manure P – Crop Removal)



### Agronomic Soil Test P in Virginia for years 2004-2006. (% soils rated "Very High")



92,303 Commercial Samples

≥10%-Yellow

≥20%-Orange

≥33%-Red

Heckendorn and Maguire, 2007

# Poultry litter from 20000 broilers applied to 150 bu/acre corn crop

#### <u>Nitrogen</u>

Rate = 4.2 t/A150 lb PAN/A 218 lb P<sub>2</sub>O<sub>5</sub>/A (57 lb [Table 4-7 p55 S&C]) 122 lb K<sub>2</sub>O/A (40) N needs met **161 lb P<sub>2</sub>O<sub>5</sub>/A Surplus** Land required = 36 A82 lb K<sub>2</sub>O/A Surplus

Soil Test: P & K = H +

PhosphorusRate = 1.1 t/A35 lb PAN/A57 lb  $P_2O_5/A$ 28 lb  $K_2O/A$ 

115 lb N deficit/A  $P_2O_5$  needs met Land required = 137 A 12 lb K<sub>2</sub>O Deficit/A

Total Manure = 20000 birds \* 6 cycles \* 1.25 tons/1000birds = 150 tons Manure = 36 lbs PAN/t; 52 lbs  $P_2O_5/t$ ; 29 lbs  $K_2O/t$ 

