The Water Cycle and Water Balance in Nutrient Management

Soil Formation and Soil Morphology

Soils and Landscapes of Virginia's Physiographic Provinces

Environmentally Sensitive Areas

By Dr. Steven C. Hodges

The Water Cycle

Amount Variability Availability
Distribution Spatial
Periodicity Relative to crop

The thickness of arrows is proportional to approximate amounts of water at Blacksburg, VA, where long term averages of data indicate: Annual precipitation = 41 in. Annual runoff plus percolation = 13 in. Annual evapotranspiration = 28 in.

Five General Factors of Soil Formation

Climate

Organisms

Relief

Parent material

Climate Effects

Illustration of the effects of two climatic variables, temperature and moisture (precipitation) on the depth of weathering as indicated by regolith depth. In cold climates (arctic regions) the regolith is shallow under both humid and arid conditions. At lower latitudes (higher temperatures), the depth of the regolith increases sharply in humid areas but is little affected in arid regions. In humid tropical climates, the regolith may be 50 m or more in depth.

General Types of Natural Vegetation in the United States

Pacific Coast forests	1
Rocky Mountain forests	Central hardwood forests
Grasslands	Southern forests
Desert types	Tropical forests
Northern forests	Flatwoods

Nutrient Recycling

Relief

Ruhe's Hill Slope Model

Geologic Processes

- Unaltered layers of sedimentary rock with only the uppermost layer exposed.
- Lateral geologic pressures deform the rock layers. At the same time, erosion removes much of the top layer, exposing part of the first underlying layer.
- Localized upward pressure further reforms the layers, thereby exposing two more underlying layers. As these four rock layers are weathered, they give rise to the parent materials on which different kinds of soils are formed.

Relief, Organisms, & Parent Material

Development of a Soil Profile with Time

Soil Profile Forming Processes

Additions

Losses

Translocations

Transformations

soil formation - Flash Animation

The Soil Profile

- **O** = layer dominated by organic matter
- A = mineral horizon at the surface showing organic enrichment
- E = subsurface horizon showing depletion of OM, clay, Fe, and Al compounds
- B = horizon showing enrichment of clay minerals, Fe, Al, or organic compounds
- C = horizon of loosened or unconsolidated material
- $\mathbf{R} = \mathbf{rock}$

Soil Profile includes:

- "A" Horizon
- **Thin "E" Horizon**
- Thick "B" Horizon

Soil Profile includes:

- Thick "A" Horizon
- Prominent "E" Horizon
- Thin "B" Horizon comprised of oxides

Soil Profile includes:

Thick "A" Horizon

Gray, clayey "B" Horizon

Geologic Map of Virginia

Sequence of Parent Materials

Coastal Plain Physiographic Province

Coastal Plain Deposits

 Thick, cyclic deposits of sands, silts, clays and organics.

Salt and Brackish Marshes

Lower Coastal Plain Soil

Well Drained Coastal Plain Soil

Prominent clay loam Bt horizon

Croplands in Coastal Plain

- Sandy loam surfaces
- □ Large fields
- Gentle Slopes

Virginia's State Soil: Pamunkey

Middle coastal plains
Loam/clay loam
Well drained

Corn on intensively cropped soils

Middle Coastal Plain

Norfolk Soil

Upper Coastal Plain

Highly weathered

Plinthite layer in Bt horizon

Upper Coastal Plain Cropland

Broad gentle slopes

Cotton – corn – peanuts – soybeans – small grains

Small Grains in Upper Coastal Plains

Restrictive Layers

Slow surface drainage
Higher clay content

Poorly Drained Soils

Piedmont Physiographic Province

Rolling Landscapes

- Red, clayey, soils common
- Usually eroded

Weathered biotite mica gneiss

Rock Thin Section

Mica weathering to layered clays

Kaolinites and vermiculites

Landscape Diagram of Piedmont Soils

Piedmont Landscape with Cecil Soils

Tobacco on Red Soils in Western Piedmont

Cecil Series

Clayey, kaolinitic, thermicTypic Kanhapludult

Weathered and "folded" schists

Physiographic Provinces – SW Virginia

Blue Ridge Physiographic Province

- Cool climates with higher rainfall
- Steep landscapes
- Folded parent materials

Well drained

Well aggregated

Less weathered

Highest elevations

High organic matter

Less weathering

□ Less clay

Forages and Woodlands

Ridge & Valley Physiographic Province

Folded parent materials

ShalesSandstoneCarbonates

Complex soil systems

Limestone Valleys (cleared)
Shale, Sandstone Ridges (wooded)

Productive Soils from Carbonate Rocks

Acid Shale Derived Soils

Groseclose Soil

Well aggregated

□ Well drained

Carbonate derived soils with clayey Bt horizons
 Solum thickness varies

Fruit Crops

Course Fragments in Shallow Soils

Flat Bedded Geology In Applachian Plateau **Cyclic beds of:** Carbonates Shales Sandstones Clays Coal

Environmentally Sensitive Areas

Permeable Sands

Restrictive Subsurface Layers

□ Fragipans, etc.

Karst Topography

Channeling in Limestone

Limestone Soil

Sinkhole

Springs

Common in carbonate-derived soil landscapes

Shallow to Bedrock

Faulted or tilted bedrock

Thin Soil Over Fractured Rock

Shallow Soil Over Bedrock

Artificially Drained Fields

Water tables near the surface

Irrigated Sites

□ The traveling "gun"

Irrigated Sites

Center pivot irrigation
Steeply Sloping Areas

Areas that Overflow

Natural Wetlands

 Intensively cropped areas near large water bodies require buffer strips

