Livestock Watering Systems

Graves Mountain Training

$$
8 / 23 / 2017
$$

Raleigh Coleman, DCR-DSWC

Topics

- Water Sources
- Water Budgets
- Water Delivery Methods
- Case Studies

Livestock Watering Systems: Source

 of Water- Wells
- Ponds
- Springs
- Streams

Let's find these girls an alternative water source.
"Least-cost technically feasible"

Wells

- The most commonly utilized water source for livestock watering systems
- Advantages:
- Existing on many sites
- Can be drilled where most convenient on the site (i.e. near power supply for pump)
- Relatively low maintenance
- Generally reliable (once drilled and yield is known)
- Generally a good "default" when no other reliable sources on the site can be utilized
- Disadvantages:
- Gambling on yield when drilling a new well
- Expensive
- Occasionally dry up or have problems
- Groundwater table is dropping in areas of heavy use
- Utilizing a homeowner's existing well

Protect the well head electric meter from livestock damage

FAUQUIER COUNTY GROUNDWATER RESOURCE ASSESSMENT AND MONITORING PROPOSAI
FOR LONG-TERM MANAGEMIENT OF WATER RESOURCES

Declining Groundwater

Virginia Water Science Center 1730 East Parham Rd
Richmond, VA 23228 Phone: (804) 261-2856

January 2016

- According to the USGS, in 2010, 6.52 million gallons per day were used by Virginians for livestock water.

Typical Well

TYPICAL WELL DETAIL

Wells

CONSTRUCTION SPECIFICATION

VA-730. WATER WELL

1. SCOPE

This specification applies to drilled, driven, bored, jetted or dug wells developed to supply water from an underground source. It does not include pumps installed in the well, or aboveground installations such as pumping plants, pipelines or tanks.
2. REQUIREMENTS

All wells will comply with all federal, state and local laws, ordinances and regulations. All wells will be constructed as Class III wells, as defined by the Virginia Department of Health Private Well Regulations.

3. SUBMITTALS

The Landowner will provide the NRCS or SWCD representative with a copy of the Commonwealth of Virginia Water Well Completion Report - Certificate of Completion/County Permit (DEQ form) or Uniform Water Well Completion Report (Department of Health form).

The Landowner will provide the NRCS or SWCD representative with a map showing the well location.

Some well drillers are still using the old "Water Well Completion Report." Recommend that they start using this one, which provides more information:

Form GW-2
Roviad 7/1/2015
Page 1 of 4

1. Contact Information

Contact	Name		Address
Owner			
Driller			
System Provider			

2. Well Location

3. Facility \& Use

Type of Facility (Check One):	Type of Use (Check All That Apply):				
\square Watarworks	\square	Drinking Domestic Use	\square Food Procasaing	\square	Cooling/Heating
\square Observation/Monitoring Well	\square	Agricultural	\square	Manufacturing	\square
\square Privata Woll	\square	Irization	\square	Firo Safaty	\square

Well designation, Name or Number:
5. Disinfection
Well Dizimfected: \sim Yos No Date:
6. Abandonment (*Whan abandoning a well, Sections I thru 6 are recuured to be completed)

9. Geologic Information

Comments:

Ponds (Existing Ponds)

- Rarely used as watering sources, but can be very reliable and more economical that installing a new well
- Advantages:
- Less expensive and "risky" than spring development or stream pickups
- Rarely will a reservoir be needed because the pond provides storage to meet the peak demand
- Large change in grade over short distance at embankment is ideal for a hydraulic ram pump on remote sites
- Disadvantages:
- May require more maintenance than a well
- Landowner needs to maintain the dam - if the
 embankment or spillway blows out, the water source will be gone

The pond-full water elevation is established and the waterline is staked at this elevation. The widths of the valley at this elevation are measured at regular intervals and these measurements are used to compute the pond-full surface area in acres. The surface area is multiplied by 0.40 times the maximum water depth at the dam. For example, a pond with a surface area of 3.2 acres and a depth of 12.5 feet at the dam would have an approximate capacity of $0.4 \times 12.5 \times 3.2=16.0$ ac. ft. (1 acrefoot $=325,857$ gallons). If a more accurate answer is required, the surface area at successive intervals of elevation may be determined and

EFH11

 the average end-area method may be used to compute the volume.4/2" Bronze CapSteamer Hose Connection

Bronze Nipple $41 / 2^{\prime \prime}$ Steamer to $4^{\prime \prime}$ or 6 "Pipe Thread

(Not to scale)

A water supply pipe should be installed under or through the dam
 where water is to be used below the dam, such as for stockwater, irrigation, con fijlising, a spany tiok. This pipe usually is in addition to the principal spillway or trickle tube. The water supply pipe should have water-tight joints and be equipped with a suitable valve and strainer at its upper end. For small rates of flow, such as are needed to fill livestock or spray tanks, $1 \frac{1}{2}$-inch diameter stẹel pipe is generally used. Where larger rates of flow are required, such as for irrigation purposes, larger diameter pipe are commonly used. Water supply pipes should be provided with anti-seep collars to retard seepage. (See Figure 11-7 for a sketch of a stock watering facility.)

Figure 11-7 Embankment pond equipped with a stock watering facility

Figure 3 Gravity system.
*NOTE: Route new pipelines around the embankment.

TYPICAL CROSS SECTION OF PIPELINE AND DAM
Not to scale
Sto. \square on CL of Structure

Dry Hydrant

Hysnit Depatimert Conctrotion 8 Recreation

TYPICAL PIPELINE INSTALLATION FOR WATERING FACILITIES AT EXISTING PONDS

Hzynt Depatimert Conctrotion 8 Recreation

Springs

- Rarely used as watering sources, but can be very reliable and more economical that installing a new well
- Advantages:
- Often the only source of water on remote sites
- Disadvantages:
- Most "good" springs have already been developed
- Seeps are very difficult to judge
- Environmental requirements make then not feasible in many cases (25% of flow, no flow-through systems)
- Require a fair amount of engineering experience and
 ESPECIALLY an experienced contractor
- May go dry when water is needed the most

Spring Box BELOW Cutoff Wall

Spring Box Below Cutott Wall

-4^{*} Collector tile 'See plan viem for length and location
intended wall and dimension it accordingly. Walls are generally constructed + clay or concrete.

Plan View of Collector Trench

Collector Trench
Section A - A

.

rench to intercept wcrer
cravel to cover tile (6 to 8)

Wall and Spring Box Materials		
Item	Size	
Spring Box		
Gravel		
Supply fipe thra Wall		
Overflow Pipe thru Wall		
Impervious Wall		

Spring Box ABOVE Cutoff Wall

USDA

Subject: ENG - Guidance for Spring Developments

To: Anton Schacffer Area Engineer, Harrisonburg Sharyl Ogle, Area Engineer. Christiansburg Scan Kimmel, Area Engineer, Farmville Bill Widner, Area Engineer. Sruithfield

Date: January 10, 2017

File Code:

The purpose of this memorandum is to provide guidance on planning designing and installing spring developments in accordance with Virginia Conservation Practice Standard (CPS) Spring Developrocnt (Code 574). This guidance also applies to the re-development of existing spring developments.

Springs can provide a reliable source of water in certain situations. However, there are environmentally sensitive areas that need to be examined when developing them. In order to maintain engineering quality and consistency, it is imperative that we are consistently using the same process and applying the same criteria. Below are items that need to be addressed for any spring development or re-development:

- The Area Engineer and the Area Resource Soil Scientist will work together to provide assistance to field staff in the planning and design of all spring developments.
- A wetland determimation is needed to verify if wetlands are present at or around the spring development location.
- Complete the Wetlands attachment (attached) to the CPA-52 to documen the plamed spring development. All requirements in the Wetland attachment must be met.
* Perform a water budget analysis to determine the flow rate of the spring and the demand for livestock water. The flow rate of the spring should be determined during the driest part of the year, typically in the summer months.
* No more than $1 / 2$ of the flow from the spring can be removed. This is to ensurs that no more than $1 / 4$ of the original wetland is drained in accordance with the Food Security Act of 1985
- Flow-through (cascading) systems will not be allowed. When feasible, automatie valves, float valves, etc. must be used to direct water (in excess of the amount for livestock needs) back to the spring head and through the entire wetland.

Streams

- Rarely used as watering sources, but in limited applications, they can be developed as a water source
- Advantages:
- May be the only water source available
- Disadvantages:
- Maintenance, maintenance, maintenance!
- Usually only possible on the largest of streams (depth of water/reliability, sediment/channel issues)
- Streams may dry up during the driest part of the year

Photo Credit: Virginia DGIF
Would the Rose River (out front at Graves Mountain Lodge) make a good source for a dry hydrant or stream pick-up?

Dry Hydrant

Stream Pick-Up

Limited Access

Figure 1. The position of cow muzzle during drinking, Metzner (CIGR, 1994)

- A hardened limited access into a body of water (stream, pond, or springfed stream) is generally a reliable least-cost alternative for remote sites
- Advantages:
- All projects with "stream exclusion" would theoretically have a water source that could become a limited access (unless intermittent)
- "foolproof" water source (not dependent on power)
- Disadvantages:
- Require maintenance (may be damaged during heavy stream flows)
- Less water quality benefit than total stream exclusion
- Cattle may push each other around inside the limited access

Mryint Department ci Conserwation \& Recreactor

See CPS 614 Watering Facility:

Watering Ramps

Where livestock or wildlife will drink directly from a pond or stream, use a watering ramp to provide a stabilized access to the water. Evaluate the existing and proposed fences, grazing patterns, shoreline slope, and water depth when choosing the optimum location for the ramp.
Width. Make the ramp wide enough to accommodate the expected usage but not less than 12 feet.

Length. Extend the ramp into the stream or pond far enough to achieve the desired depth during the driest times of the year.
Surface drainage. Divert surface runoff from the approach to the ramp.
Slope. Make the slope of the watering ramp consistent with planned animal usage but not steeper than 3:1.

6:1 maximum if also serving as a stream crossing. 6:1 or flatter recommended.

Side slopes. Make all side slope cuts and fills stable for the soil materials on the site. Make the side slopes of cuts or fills in soil materials no steeper than 2 horizontal to 1 vertical ($2: 1$) Make rock cuts or fills no steeper than 1.5 horizontal to 1 vertical (1.5:1).
Foundation. Where necessary, prepare the foundation by removal and disposal of material that are not adequate to support the design loads.

Surface material. Use the criteria in NRCS CPS Heavy Use Area Protection (Code 561) to design the ramp surface. The selected material must be of adequate quality to withstand underwater conditions.

Access. Use fencing or other barriers to delineate the boundaries of the ramp. Use Virginia NRCS CPS Fence (Code 382) for the design and construction of a fence. Barriers must be of sufficient size, strength, and quality to meet the intended use of the facility. Do not use electric fencing in the area immediately adjacent to the water.

Ramps in Streams. Use the criteria in Virginia NRCS CPS Stream Crossing (Code 578) for the design and construction of a ford crossing except as noted above.

Locate the watering ramp so that it does not impede the movement of aquatic organisms in the stream.
Ramps in Ponds. A minimum water depth of 3 feet, measured from the designed permanent water level, is recommended. Where the pond depth is greater than 3 feet at the ramp location, it may be necessary to excavate the ramp into the pond bank to provide a stable base at the lower end. Extend the ramp a minimum of 0.5 feet above the designed permanent water level.

Limited Access in Shade:

Limited Access Outside of Shade:

From CPS 614:

It is difficult to put a fence in the middle of a stream. Where possible, extend the fence
completely across the stream. Swinging gates can be used to restrict animal movement.

Water Quality Impact?

NOTE: This particular limited access was NOT installed for cost-share.

Site Inventory: Gathering Information

- What water sources do the livestock currently have access to?
- What water sources are also available (or could be created)?
- What is the yield of existing water sources? Measure the source flow rate.
- Where is electricity available?
- Pumps need power!
- Is there any existing infrastructure that can be tapped into?
- Housing for pressure tank (if applicable)
- Existing pipeline (what length, type, diameter, depth?)
- Etc.
- Where do watering facilities need to be provided?
- What type of \& how many livestock need water?
- Is there more than one group?

Inventory Checklist

- You can take this checklist with you on site visits
- Found on Page A-I of the VA NRCS Watering Facility Design Note (DN-614)

Watering System Resource Inventory Checklist
\qquad Assisted by: \qquad
Date:
A. Livestock to be Served:

Type of Animal	Number of Animals	Average Age	Average Weight	Maximum Daily Water Consumption/Animal (gpd)

How many times a day do the animals drink? \qquad
Time needed to water herd: \qquad
Notes on grazing season and system: \qquad
Trough type preference: \qquad
B. Water Resources:

Water Source (well, spring, pond, stream, public)	Estimated Yield (gpm)	Comments on Quality	Comments on Reliability

C. Energy Resources

Energy Source (utility-supplied electricity, wind, solar, other)	Comments on Preference, Accessibility, or Practicality

D. Soil Resources:

Comments on wetlands, rock outcrops, abrasive soils, soil depth, or other soil features influencing pipeline or trough placement. Use this space, Soil Investigation Form 538, or note in the field book.

E. Site Limitations

Diameter and material of any existing pipeline: \qquad
Note utilities, property lines, or other areas to avoid in a sketch in the field book or back of this page. Emphasize the importance of contacting Miss Utility at 811 .

Site Inventory: Specifics for Water Sources

- Wells:
- What is the yield? What is the pumping rate? (More to come.)
- Has it ever gone dry?
- Ponds:
- Is the dam in good condition?
- Is the principal spillway in good condition?
- Does the water level fluctuate throughout the year?
- Is there a significant influx of sediment into the pond? (Look at the inflow areas, color of water)
- Springs
- Has the spring ever gone dry?
- Is the spring a true spring (point source) or a seep?
- Are you at the head of the spring (where it comes out of the ground)?
- Streams
- Are the banks and bed stable?
- Are there consistently deep pools?
- Is there a significant sediment load in the stream?

Is there anything in the contributing drainage area that would make the water unsafe for livestock consumption?

Source Flow Rate

- Measured in gallons per minute (gpm)
- Will be entered into Livestock Watering Systems Worksheet to see if the source produces enough water in a 24-hour period to be able to serve as the livestock water source

Measuring the Source Flow Rate

- A container of known volume and a pipe are indispensable tools!
- As simple as a gallon milk jug and piece of 2 "x3" gutter downspout
- Should be measured during the dry part of the year when the water table is at its lowest (usually August)
- Landowners who have been long-time residents of their properties may have a good feel for the reliability of a given water source, but have they measured it during the "dog days" of summer?
- Springs: Remember, we are only allowed to used 25% of the source daily yield
- Ponds: Measure the outflow from the pond when the pond is at its normal water level and long enough after a storm event that you are only measuring its base flow
- Streams: Stream pickups or dry hydrants require significant base flow
- If all the livestock currently rely on a given water source exclusively, it may be sufficient (but not always - especially if we can only utilize 25% of it)

1. Form dam to
funnel entire flow
into a collection
pipe

2. Begin collecting

 water in a container of known volume3. Time how long it takes for the container to fill

- Example: It takes 15 seconds to fill a one-gallon container.
$\frac{1 \text { gallon }}{15 \text { seconds }} \times \frac{60 \text { seconds }}{1 \text { minute }}=4$ gallons per minute

Hysnit Depatimert Conctrotion 8 Recreation

Measuring Flow Rate in Channels

- $\mathrm{Q}=\mathrm{AV}$
- USGS StreamStats: "Low Flows Region Statistics"
- Compare rough estimate of current flow level vs. "Low Flows"

Low Flows Region Statistics					
Statistic	Value	Unit	Prediction Error (percent)	Equivalent years of record	9
M1D1 11Y	0.21	$\mathrm{ft} 3 / \mathrm{s}$	110		
M1D1 25Y	0.13	$\mathrm{ft} 3 / \mathrm{s}$	130		
M1D1 43Y	0.0926	$\mathrm{ft} 3 / \mathrm{s}$	160		
M1D1 67Y	0.0658	$\mathrm{ft} 3 / \mathrm{s}$	180		
M1D2Y	0.0458	$\mathrm{ft} 3 / \mathrm{s}$	210		
M4D1 11Y	0.47	ft3/s	130		
M4D1 25Y	0.35	$\mathrm{ft} 3 / \mathrm{s}$	150		
M4D1 43Y	0.27	$\mathrm{ft} 3 / \mathrm{s}$	170		
M4D1 67Y	0.21	$\mathrm{ft} 3 / \mathrm{s}$	190		

ZUSGS

Low-flow Charactaristics of Verginin Stugnat

themerimetion

Wells: Yield vs. Pumping Rate

- The yield of a well and the pumping rate out of the well are two different things
- Yield: natural recharge rate of the well
- Determined during drilling
- Found on the "Water Well Completion Report"
- Ask local Health Department office for copy of the report if landowner does not remember the yield
- Pumping rate: the rate that water is pumped from the well
- May be greater than, equal to, or less than the yield!
- Concern: We don't want to pump the well dry (bad for pump, bad for livestock)

Pumping Rate vs. Yield

Okay?

Pumping Rate < Yield Yes
Pumping Rate $=$ Yield \quad Yes (assuming there is some storage)
Pumping Rate > Yield ??? (need to perform calculations)

Mryinh Departmerte Constration a Recreation

How do we determine the yield?

- Landowner's Memory or Records
- May be recorded on the cap of the well
- Health Department
- Project Records (if extending a cost-shared project)
- Are you adding to an existing system that already serves the livestock in question? (i.e. not adding any demand to the system)
- Well yield test:

[^0]COMMONWEAL TH OF VIRGRNA UNIFORM WATER WELL COMPLETION REPORI

DEQ Woll USGS Local $=$ VDH HDIN = VDH PWSID =

Well designation, Name or Number:
5. Disinfection

| Well Disimfected: |
| :--- | :--- | :--- |

6. Abandonment ("Whan abandoning a well, Sections I thru 6 are reccured to be completed)

7. Pump Test

8. Pump Data

| Type: | | |
| :--- | :--- | :--- | :--- | :--- |
| Production Pump Intake Depth: HP: | | |

9. Geologic Information

Comments:

Water Budgets

Virginia Livestock Watering Systems - Pressure System Worksheet

- First step in designing any system: Is the water source adequate?
- Evaluate the source on a 24-hour basis: Does the source produce enough water in 24 hours to meet the livestock requirements in that 24-hour period?
- Compare "Total Daily Demand" vs. "Source Daily Yield"
- "Source Daily Yield" MUST be greater than "Total Daily Demand"

Water Budgets: Determining Daily Demand
 Water Quantity Guidelines for Various Livestock

- See DN-614, A-2
- If utilizing existing wells, be sure to account for the other demands on the well!
- ESPECIALLY Washwater for Dairies
- Household use
- A well may be adequate for its current demands, but adding livestock may be beyond its capacity

Type of Livestock		Estimated Daly Watar Consumption per Animal	Referemees
Cuta	Eleuf niul	15	
		3-12	Structures ard Endiranmeth Han acook (MWPs 19a7)
	Caf	5	VA USOA-NRCS imtiosuction to Consemation Engineering
		1161.5 gariue b body meght	
	Heef comical poer	20	Vh Lisoa-NRCS Jtrotucson to Consevation Enyneeing
		5.16	Histeral Range and Pasture Hianibook (UspaiNRGSS, 1997)
	Grrwing steera/ pregrant helfer	0.18	National Alange and Pasture Hanctook (USDANEFCS, 1987)
	Heiler	10-15	Scucturas und Ewilornsmi Handiook (WWiPs, 1987)
	Miving com	30	VA USDA-NRCEE introduction to Conservation Engincering
		10.30	Nutone Range med Pastup tianctook (USOA NACS, 19a7)
		35-45	
	Dry onw	20	VA UGOANRCS introcuiction to Consarvalion Engiveering
		20.30	
Swent	Smere	4	VA UsOM-Nacs Introduction le Consarvation Engiesarity
	Fixieting am/4	35	
	Numany	1	Stucturs and Enysermerd Handboch inw.js. 1987)
	Gestatiog sow	E	
	Som anditur	π	
Other Crazing Mampiak	Horse	12	Structuma and Envroumet Handook (MWPS. 1497). VA USDA NACS Linexdicion to Ceranvation Engineerivg
		8-12	
	Lama	4	VA USDA.NFCS Intodiction to Comenation Ehphearioy
	Sharp, Cenal	3	VA USDA-MRCS involucten to Conservation Engeaering
		2	
		1.4	Natioral Range and Pasture Handbock (USDA-NRCs, tewn)
Poutry	100 chickem myert	$\#$	
	tu0 turkeys	45	
Geneni	3000 it iwe werght (A_{2} /]	30	

Working Backwards:

The water source needs to be evaluated to make sure it can meet the daily water demand for the herd. For example, 100 beef cow-calf pairs consuming a total of 2000 gallons per day require a water source yielding more than 1.4 gallons per minute (with continuous gravity flow or a pump running 24 hours a day):

$$
\begin{aligned}
\text { Minimum required source flow rate } & =\frac{\text { daily demand }(\mathrm{gal} / \text { day })}{\text { source flow duration }\left(\frac{\mathrm{hrs}}{\mathrm{day}}\right) \times 60 \mathrm{~min} / \mathrm{hr}} \\
& =\frac{2000 \mathrm{gal} / \text { day }}{24 \frac{\mathrm{hrs}}{d a y} \times 60 \mathrm{~min} / \mathrm{hr}}=1.4 \mathrm{gpm}
\end{aligned}
$$

- Note: If the source is a spring development, we can only use 25% of the flow, so the minimum required source flow rate for this example would be $1.4 \mathrm{gpm} / 0.25=5.6 \mathrm{gpm}$.

Water Budgets

- The water budget is analogous to a money budget

Water	Money
Source Daily Yield \longleftrightarrow Salary/Regular Deposits	
Daily Demand \longleftrightarrow Expenses	
Storage \longleftrightarrow Bank Account	

- Difference: Time Scale (Daily vs. Monthly)
- You can't spend more money than you earn (without credit cards), no matter how much money your bank account can hold
- Similarly, you can't use more water than the source produces, no matter how much storage you have
- A reservoir alone will not solve the source daily yield < daily demand problem!

Options if Source Daily Yield < Daily Demand

If daily yield is less than daily demand, then an alternate or a supplemental source of water will need to be used or the number of animals served will need to be reduced.

- Is there another water source that can be used instead?
- Is there another water source that can be tied in so that both water sources contribute?
- Can a limited access to the stream also be installed?

Example: Inadequate Well

2) Water Budget
a) Total Daily Hater Demand
Type of livestock: \quad.
Number of Animals: Water demandlanimallday:
Total Daily Demand:

See Design Note for watering recommendations for various
types of livestock.

c) Evaluate Source

Source flow rate:	0.5 gpm
Source daily yield:	720
gpd	

If source flow rate is close to or less than Peak Demand, consider storage alternatives (see 2nd Tab).
If source daily yield is less than Daily Demand, consider an alternate or
supplemental w ater source

- Can a limited access to the stream also be installed?
do to cen mefoce
attached to

Also, ensure pump has dry run protection.

Two-pronged approach to source adequacy:

- Once you've determined that the source produces enough water to meet the total DAILY demand, you have to determine if it will be able to meet the PEAK demand of the livestock
- Don’t want to run out of water DURING a drinking event

What is the peak demand?

- Caused by the "herd" drinking habits of cattle
- All come to drink at the same time
- Need to have adequate recharge available to the trough
- Rules of Thumb:
- 2gpm per hole of frost-free trough
- 5gpm for storage troughs

Cattle Watering Behavior Facts

- They drink 1 to 2 gallons per minute
- They drink for 2 to 3 minutes per drinking event
- So they can drink 6 gallons per drinking event per animal on 'high side'
- 2 to 5 drinking events per day - MU

Slide borrowed from "Solar Powered Water Systems for Grazing Operations" webinar presentation by Kevin Ogles, Grazing Lands Specialist, USDA-NRCS

Select flow rate to troughs as guided by Step 2 and Design Note. Typical design flow rates are: 8 gpm for frost-free troughs; 5 gpm for storage troughs.

Important Distinction:

- DN614-I-2: The daily water demand will determine if a water source is adequate, while peak water demand governs sizing of system components.
- Pipeline size, pumping rate (if a pump is used), etc.
- Peak Demand \rightarrow Design Flow Rate

Virginia Livestock Watering Systems - Pressure System Worksheet

Example: Is extra storage needed for this project?

Water Source: Well, Yield = 3gpm

 Troughs: 4-hole frost-free2) Water Budget
a) Total Daily Water Demand

Type of livestock: Number of Animals: Water demand/animal/day: Total Daily Demand
See Design Note for watering recommendations for See Design Not forwat
various types of livestock.
b) Daily Peak Water Demand Number of times herd drinks/day Time desired to water herd: Average peak demand: Alternate peak demand See Design Note for cons estimating peak demand.

c) Evaluate Source

 Source flow rate: Source daily yield 3 gpm alternatives (see 2nd Tab) If source daily yield is less than Daily Demand, consider an alternate or supplemental water source.3) Design Parameters
a) Trough Information

Trough type(s): \square 4-Hole Frost-Free Design flow rate: Alternate Peak Demand \quad. 8.0 gpm Select flow rate to troughs as guided by Step 2 and Design Note. Typical design flow rates are: 8 gpm for frost-free troughs: 5 qpm for storaqe trouqhs.

- Storage might be needed, since we are planning to pump at 8gpm to meet the peak demand, but the well yield is only 3gpm
- Need more info on the well to determine how much water is stored in the well

Example: Is extra storage needed for this project?

Additional Well Info:

Bore-Hole Depth: 425'
Diameter: 6"
Static Water Level: 20'
Planned Pump Height: 20' from bottom

How much water is stored in this well?

Depth of Water Available to Pump =
Well Depth - Static Water Level - Pump Height - Pump Length
425' 20' - 20' - 3^{\prime} = 382' of water

Well Diameter	Storage per Foot of Depth (gallons)
$2 "$	0.163
$3^{\prime \prime}$	0.367
$4 "$	0.653
$5^{\prime \prime}$	1.02
$6 "$	1.47
$8^{\prime \prime}$	2.61
$10^{\prime \prime}$	4.08
$1 "$	5.87
$2 \prime$	23.50
$3 \prime$	52.87
$4 \prime$	94.00
5^{\prime}	146.87
$7 \prime$	287.86
9^{\prime}	475.86

DN-614-B-4

Water Storage in Well Casing or Pipe

Water storage volume in the well casing may be significant enough to justify using the source when peak demand is close to the supply rate. Storage per foot of depth is tabulated below for well diameters ranging from 2 inches to 9 feet.

382ft. $\mathrm{X} 1.47 \mathrm{gal} / \mathrm{ft} .=\mathbf{5 6 1 g a l}$ stored in well

2) Water Budget

a) Total Daily Water Demand

Type of livestock:	Cow/Calf Pairs	
Number of Animals:	65	
		25
Water demand/animal/day:	1625	gpd
Total Daily Demand:		
See Design Note for watering recommendations for		

b) Daily Peak Water Demand Number of times herd drinks/day Time desired to water herd: Average peak demand: Alternate peak demand: See Design Note for considerations for estimating peak demand.

1625 gpd / 3 events $=545$ gallons per event

There is enough water stored for one drinking event (especially considering we haven't factored in 3gpm recharge during the event), but what about subsequent events? Will the well recover in time?

Well Budget: 3 events

Water Well Budge									
Assumptions:									
Recharge Rate (Well	gpm								
382 ft . of storage $=$	ns of storage in the								
65 cow/calf pairs @	1625 gpd								
1625gpd / 3 event	event @ 8gpm deliv	rate $=68 \mathrm{~min}$							
Description	Water in Well (gal)	Time Start	Time Stop	Total Time (min)	Delivery Rate (From Well, gal)	Recharge Rate (To Well, gal)	Net Per Min (gal)	Total Net (gal)	Water in Well (gal)
Drinking Event 1	561	9:00	10:08	68	-8	3	-5	-340	221
Recharge	221	10:08	12:00	112	0	3	3	336	557
Drinking Event 2	557	12:00	13:08	68	-8	3	-5	-340	217
Recharge	217	13:08	15:00	112	0	3	3	336	553
Drinking Event 3	553	15:00	16:08	68	-8	3	-5	-340	213
Recharge	213	16:08	18:04	116	0	3	3	348	561

The well maintains $213+$ gallons in storage, and recovers by 6:04pm. There is no need for additional storage.

Well Budget: 2 events

NOTE: Assuming fewer drinking events is generally more conservative and will help ensure that enough storage is available. Animal behavior is difficult to predict!

Water Well Budget

Assumptions:
Recharge Rate (Well Yield): 3gpm
382 ft . Of storage $=561$ gallons of storage in the well
65 cow/calf pairs @ 25gpd = 1625 gpd
$1625 \mathrm{gpd} / 2$ events $=815$ gal/event @ 8gpm delivery rate $=102 \mathrm{~min} /$ event

Description	Water in Well (gal)	Time Start	Time Stop	Total Time (min)	Delivery Rate (From Well, gal)	Recharge Rate (To Well, gal)	Net Per Min (gal)	Total Net (gal)	Water in Well (gal)	
Drinking Event 1	561	9:00	10:42	102	-8	3	-5	-510	51	
Recharge	51	10:42	2:00	198	0	3	3	594	645	*Cap at 561
Drinking Event 2	561	14:00	15:42	102	-8	3	-5	-510	51	
Recharge	51	15:42	18:32	170	0	3	3	510	561	

The well maintains 51+ gallons in storage, and recovers by 6:32pm. There is no need for additional storage.

Storage

- If your peak demand cannot be met by the source, here is where storage becomes critical!
- A reservoir (or storage in the well) is needed when the source daily yield is adequate, but the source recharge rate alone is not adequate to "keep up" with the livestock when they come to drink

Reservoirs

- Storage for Peak Demand
- Low-Yielding Source
- Pumps that cannot meet peak demand (e.g. solar, hydraulic ram)
- Sediment Settling (e.g. for spring developments)
- NOT purely for pressure reduction (there are more costeffective ways of reducing pressure)
- Pressure Reducing Valves
- Storage Troughs can break pressure:

Make sure reservoirs are bedded level and with a granular backfill to keep them from settling. Recommend plumbing with a galvanized pipe out to 10 ' from the reservoir to keep PVC from shearing off if it settles. Outlet pipe must be graded to drain.

Water Delivery

- How will the water get from the source or reservoir to the point of use?
- Three principle methods:
- Gravity
- Pressure (Pumps)
- Hybrid (Pressure/Pump + Gravity)

Gravity

- Rely on gravity to move the water through the system to watering facility
- Static pressure increases at 1 psi per every 2.31 feet of fall
- Pressure resets to zero when the system is open to the atmosphere

Maximum flow rate is computed based on equations from EFH Chapter 3:

$$
Q_{\max }(c f s)=A \times \sqrt{\frac{2 g H}{K_{p} L}} \times\left(450 \frac{g p m}{c f s}\right) \times F
$$

where: $\quad \mathrm{Q}_{\max }=$ maximum flow rate the pipe can carry (cfs)
$\mathrm{A}=$ cross-sectional area of the inside of the pipe (ft^{2})
$\mathrm{g}=$ gravitational constant $=32.2 \mathrm{ft} / \mathrm{s}^{2}$
$\mathrm{H}=$ elevation head (ft)
$\mathrm{K}_{\mathrm{p}}=$ head loss coefficient
$\mathrm{L}=$ pipe length (ft)
$450=$ unit conversion factor
$\mathrm{F}=$ float valve efficiency factor $=0.8$ with float valves; $=1$ without float valves.

Mryinh Departmerte Contanation a Recreation

Figure I-5. Float Valve vs. Cascading Trough Arrangements.

- In gravity systems, troughs must be located far enough below the water source to generate enough pressure for float valves to operate efficiently
- Frost-Free Troughs:

5 psi min. $\times 2.31 \mathrm{ft} / \mathrm{psi}=11.55 \mathrm{ft}$. between source and float valve
\rightarrow Need 14ft. between source and ground at trough

Air Locks

- One of the major considerations in installing gravity pipelines is air-locking.
- Air locks can be partial or total; that is, they can either completely block flow, or they can partially block the flow, reducing the desired flow rate. The following sketches illustrate total and partial air locks:

Pipeline installed with a high place in the line.

Partial Air Lock

Total Air Lock

Preventing Air Locks

- The occurrence of an air lock in a pipeline can be prevented in a number of ways:
- Install the pipeline on a continuous grade without undulations or high points - the topography may make such an installation impractical.
- Ensure that air does not enter the pipeline - while this is obvious, in a practical sense, it is probably not possible to completely prevent air from entering a pipeline.
- Ensure that the flow velocity is sufficient to flush any air out of the line.
- Adding a vent pipe or water trough at the high spot is a possible solution

Prevention is always the best cure here. Airlocks should be discussed with the landowner and the contractor BEFORE the pipeline is installed.

From the "Pipeline Detail" Design Sheet:
4. All pipelines with gravity flows shall be graded to prevent unvented crests in the pipelines. These areas in the pipeline will cause the pipeline to air lock and not flow.

What if all of the troughs are not at lower elevations than the water source?

PUMP SYSTEMS

Conventional
Solar-Powered Hydraulic Ram

Not commonly

NATURAL RESOURCES CONSERVATION SERVICE VIRGINIA CONSERVATION PRACTICE STANDARD

 PUMPING PLANT

 PUMPING PLANT}
(No.)

CODE 533

CRITERIA

General Criteria Applicable to All Purposes
Pump requirements. Design flow rate, range of operating heads, and pump type shall meet the requirements of the application.

Selection of pump materials shall be based on the physical and chemical qualities of the
material being pumped and manufacturer's recommendations.

Electrical wiring shall meet the requirements of the National Electrical Code.

CHECK DATA

1. As-built plans including dimensions, types and quantities of materials installed, and variations from design. Include justification for variations.
2. Certifications for practices needing a PE design.
3. Locations of appurtenant practices.
4. Adequacy of vegetation and/or ground cover.
5. Complete as-built section of Cover Sheet.

Sling Pumps

- Not commonly used or recommended
- Uses energy of moving water to force water to a higher elevation
- Operate from a flowing stream (at least 2.5 ft deep, velocity $>1.5 \mathrm{ft} / \mathrm{sec}$)
- Flow rates of $1-2 \mathrm{gpm}$ with lift capacity up to 50 ft .
- Rotates the pump body forcing water through a coil inside into a pipe
- Limitations:
- debris damage/clogging (frequent checking required)
- must be strongly secured to prevent being washed away

Nose Pumps

- Animal-powered pumps
- Deliver ~1pt. Of water every time the animal pushes a paddle with its nose
- Only serves one animal at a time (limited to small herd sizes)
- Calves or other animal types may not be able to operate

- May freeze in winter
- Low lift capacity (15-20ft. max.)
- Only over short distances (<200ft.)

Hydraulic Ram Pumps

Sketch of typical ram installation

Hydraulic Ram Pumps

Hydraulic rams-A hydraulic ram is an automatic pump operated by water power. It uses the power developed by the surge of a quantity of falling water to force a much lesser amount of water to an elevation above the source of supply. Figure 12-15a shows a typical hydraulic ram in cross section, and figure $12-15 \mathrm{~b}$ shows the general configuration of a hydraulic ram used for a stream development.

The volume of water that a ram can pump depends on the fall between the supply and the ram, the height the water is to be raised from the ram to the reservoir, and the quantity of water available. If the water supply is limited, a ram must be selected that will operate with the minimum quantity of water available. If the water supply is ample, the ram size is governed by the quantity of water needed daily.

Manufacturers build rams that operate successfully on flows of 1.5 gallons per minute or more with at least 2 feet of head.

The number of gallons of water delivered per minute to a given point can be estimated with the following formula:

$$
\mathrm{D}=\frac{\mathrm{VFe}}{\mathrm{E}}
$$

where
D = volume in gallons per minute that the ram will deliver
V = water supply available in gallons per minute
F = fall in feet between the water supply and the ram
$\mathrm{E}=$ vertical elevation in feet that water is to be lifted above the ram
$\mathrm{e}=$ ram efficiency (use 0.6 in the absence of specific data)

Source: EFH12

Hydraulic Ram Pumps

To determine if a ram is practical, collect the following information:

- number of gallons per minute that the spring, artesian well, or stream, will deliver
- number of gallons per day desired from the ram
- available fall, in feet, from the water supply to the ram
- elevation, in feet, to which water is to be raised above the ram
- pipeline distance, in feet, from the ram to the point of discharge
- pipeline distance, in feet. from the source of water to the ram

From CPS 533:

Water powered pumps (hydraulic rams). Pumping units shall be sized according to flow rate, lift, fall, and efficiency. Bypass water shall be returned to the stream or storage facility, without erosion or impairment to water quality.

Buildings and accessories. Pumps shall be securely mounted on a solid foundation such as pilings or concrete. Foundations shall be

Hydraulic Ram: Design Considerations

- Ideal Application: Pumping from Ponds at Dam
- Lots of fall, short distance
- Typically, pump to a reservoir at the high point in the system in order to be able to meet the peak demand
- Rams have a very low pumping rate, but pump 24 hours a day
- Reservoir should hold the 24 -hour demand
- Advantages:
- No power required
- Pump itself relatively inexpensive
- Disadvantages:
- Valves wear out because of $24 / 7$ operation
- Inlets clog if attempting in a stream
- Trough locations still somewhat limited (must be lower than reservoir)

Solar Systems: Design Considerations

- Typically, pump to a reservoir at the high point in the system in order to be able to meet the peak demand
- The sun isn't always shining!
- Reservoirs typically sized to hold 3-days worth of storage for livestock
- Advantages:
- No grid power required
- Disadvantages:

When windmill, solar, or other potentially unreliable power source is used, supply additional daily water storage volume (3-5 days), provide a battery back-up system or provide an alternate water source. Use of a float valve on a system with one of these types of power supply may not be practical.

- Expensive
- Trough locations still somewhat limited (must be lower than reservoir)

Solar System

(LCB)
An electronic device that conditions the voltage and current of a PV array to match the needs of a DC-powered pump, especially a positive displacement pump. It allows the pump to start and run under low sun conditions without stalling. It is also called a pump controller. (See Pump Controller, Volt, and Direct Current (DC).)

Fiqure 9 - Typical well installation with pertinent parameters.

Water Level Indicator

- Rod is sitting on a float in the underground reservoir
- Farmer can see water level from a distance and knows when he might need to supplement with another water source (e.g. limited access)

Solar Systems

From CPS 533:

Photovoltaic panels. The photovoitaic array shall be sized based on average data for the location and the time of year pumping occurs, according to manufacturer's recommendations. The photovoltaic array
shall provide the power necessary to operate the pump at the design flow rate, with the appropriate service factor considering a minimum panel degradation of 10 years. Fixed arrays shall be oriented to receive maximum sunlight. Panel tilt angle shall be based on the location latitude and time of year for power requirements. Panels shall be mounted securely to resist movement by environmental factors.

Photovoltaic cells-Solar power can be used to power water pumps if suitable arrays can be deployed and provide enough power for the design needs. Power storage and alternate power sources are additional criteria that must be met if photovoltaic arrays are employed. Technical guidance for design of solar-powered systems can be obtained from the NRCS State conservation engineer. An example guide is the NRCS Technical Note No. 28, Design of Small Photovoltaic (PV) Solar-Powered Water Pump Systems (http://www. or.nrcs.usda.gov/technical/engineering/environmental_engineering/data/SolarTechNote100929.pdf).

Solar System - Layout Considerations

- Proximity of pump to panels \& controller (length and gauge of wire $\$ \$ \$)$
- Line of site from panels to sun
- South-facing
- Clear view

It is also important to consider potential vandalism and theft when locating PV panels and pump systems. Unfortunately, since most solar panel systems are located in remote areas on open landscapes, the risk of vandalism and/or theft can be significant. If possible, panels, tanks, and controllers should be located away from roads and public access, as well as where features in the landscape (rolling hills, escarpments, wind blocks, etc.) can provide a maximum of shielding from public view. The use of trees, bushes, or other types of vegetation for shielding is acceptable. However, care should be taken to situate the panels far enough to the south and west of tall trees and other types of vegetation to reduce the potential for their obstruction by shadows during peak solar insolation hours.

Purchasing Solar Components

- Recommend purchasing the pump, pump controller, and solar array from the same supplier!
- The supplier will ensure that the components will work with one another.

PUMPS

- Example of a 4" submersible pump (typical pump type in a 6 " drilled well)
- Pumps are "sized by others" but we need to be able to explain how the contractor should be using our worksheet to size the pump

"Conventional" Systems

- i.e. Pumps connected to electric grid
- Less expensive than solar when close to grid
- Typically: 4" Submersible Pumps
- Jet pumps also an option

What controls when the pump is on or off?

PUMP CONTROLLERS

4 Commons Pump Controller Options:

Pressure
Switch

Timer

Float Switch

Constant Pressure/
Variable Frequency

Pressure Switch

- Most common method of pump control (especially in houses)
- Requires a pressure tank (must be sized appropriately!)
- Easy to install and replace
- Turn pump on when pressure drops to low setting
- Turn pump off when pressure rises to high setting
- The default assumption on the Virginia NRCS "Pressure System Worksheet"
- Make sure that the switch settings given by worksheet are commonly available
b) Pressure Switch Settings Based on System Load:

Low pressure switch setting: High pressure switch setting:

psi (Minimum is 20 psi .) psi (Max. is usually 80 psi .)
If a high pressure switch setting of 80 psi or more is required, consider alternate design or high pressure-rated tank.

Timer

- Turns the pump on and off at specified, changeable intervals (normally once or twice per day)
- Most common application: controlling pumps in low-yielding wells (pump to reservoir)
- Reservoir must be at high point in the system
- Troughs are supplied via gravity-flow from reservoir
- Reservoir must have an overflow otherwise the pump will burn up or pipes will burst!

- Timer may need to be adjusted throughout the year to match the changing livestock water requirements

Example 6 - Reservoir System on Timer

DN-614-II-18

Figure II-15. Layout for Example 6 - Reservoir System on Timer

Hydrant functions as air release

Figure II-16. Profile for Example 6.

With Timer: Reservoir must have an overflow!

interior Access Hotch (There may be odditional hotches, depending on reservoir design

Float Switch (in Reservoir)

- Turns the pump on when water drops below a set level
- Turns the pump off once the water level reaches the "full" level
- Typically control the pump in the well
- Water moves from the reservoir to troughs by gravity or a second (pressure-switch controlled) pump in the reservoir

Selection of Alternative Livestock Watering Systems

Table 1. Comparison of Alternative Livestock Watering Systems

System Type	Initial* Cost	Operating Cost	Maintenance	Reliability	Ability to Freeze-Proof	Water Flow Potential
Direct Access (Ponds \& Streams)	Low	Low	Med	High	Med	High
Gravity Flow (Tank Systems)	Low	Low	Low	High	Med	Med
Utility Power (AC Electric)	Med	High	Med	High	High	High
Solar (DC Electric)	High	Med	Med	Med	High	Low
Ram Pump (Water Storage)	Med	Low	Med	High	Med	Low
Sling Pump (Water Storage)	Med	Low	High	Med	Med	Low
Nose Pump (Mechanical)	Low	Low	Low	Med	Low	Low

[^1]
Selection of Alternative Livestock Watering Systems

Table 2 - Installation Considerations for Alternative Livestock Watering Systems

System Type	Considerations
Direct Access (Ponds \& Streams)	Water source should be within reasonable distance from pasture location (preferably < 2000 feet) and must supply water year round.
Gravity Flow (Tank Systems)	Water source must be located at a higher elevation than livestock watering area. (10 feet suggested minimum elevation head).
Utility Power (AC Electric)	Utility electric power must be within a reasonable distance to water source. (Distance limit depends upon pump current requirements).
Solar (DC Electric)	Clear view of horizon for solar panel location. Area out of flood plain for construction of freeze-proof dry housing for electronic components and batteries.
Ram Pump (Water Storage)	Water source must be located at a higher elevation than pump set (> 10 feet), and adequate flow from spring or stream must exist (> >10 GPM).
Sling Pump (Water Storage)	Stream with adequate velocity ($>1.5 \mathrm{ft} /$ sec) and depth (>30 inches) nearby.
Nose Pump (Mechanical)	Pump must be located < 15 feet higher than water source.

"Constant Pressure" Pump Controller

- Maintain a constant pressure in the system
- Pump is constantly running, but pump controller varies its speed (pumping rate) depending on demand
- Pressure tanks may be smaller than those for pressure switches
- More up-front expense than pressure switch set-up
- More difficult to fix than a simple pressure switch!

Variable Frequency Drives. The owner shall inform the electric power provider that a Variable Frequency Drive will be installed prior to installation, and be responsible for following requirements of the electric power provider.
The Variable Frequency Drive shall be protected against overheating.
The Variable Frequency Drive control panel shall provide the read out display of flow rate
 or pressure.

What is the minimum pressure setting for a constant pressure system?

4) Pump and Pressure Tank Design

b) Pressure Sritch Settings Based on System Load

Low pressure switch setting: High pressure switch setting: $\quad 40$ psi (Max. is usually 80 psi.$)$ If a high pressure switch setting of 80 psi or more is required, consider alternate design or high pressure-rated tank.
d) Minimum Effective Drawdown for Pressure Tank:
c) Dynamic Head added to pump by the vatering system: Dynamic head = higher switch setting of $\quad 40$ psi x $2.31=$ Total Dynamic Head will equal this number plus the 'Lift' Head required to get th-w ater from the source up to the distribution system. The flow rate and the Total Dynamic Head will be used to size the pump for the project.

If the controller is set at 25 psi (and is at the same elevation as the well), what is the actual "Dynamic Head added to the pump by the watering system"?

25psi x 2.31ft/psi = 58ft of head

Sizing pumps???

Pumps are "sized by others" (meaning that the "others" who are installing the system are the ones that pick the appropriate pump), but we need to be able to explain how the contractor should be using our worksheet to size the pump.

PUMP SIZING

- Contractor will select a pump to pump the desired pumping rate (gpm) at the TOTAL dynamic head of the system

GPM (2) TDH

- Every pump has a "pump curve" and will pump different flow rates at different head levels
- We provide the "above ground" head on our worksheets; contractor will add this to the "lift head" to determine the "total dynamic head"

Hysnit Depatimert Conctrotion 8 Recreation

Example Pump Curve

5 GPM • 1/2-1 1/2 HP

- These 5gpm pumps of varying horsepower can operate at pumping rates of $2 \mathrm{gpm}-9 \mathrm{gpm}$ depending on the total head on the pump.
- Example: The pump for a system will have a "Total Head" of 200ft. Will any of these 5gpm pumps pump at 8 gpm ?
- YES: the $3 / 4 \mathrm{HP}$ pump will work

Virginia Livestock Watering Systems - Pressure System Worksheet

1) Assistance Information		Project Notes:
Customer:		
County:		Print Page
Date:	3 r 12017	Clear Data
Assisted By:		

2) Water Budget

a) Total Daily Vater Demand

Type of livestock: Number of Animals: Water demandranimallday Total Daily Demand: See Design Note for watering recommendations for various types of livestock.

b) Daily Peak Vater Demand

Number of times herd drinksiday
Time desired to water herd:
Average peak demand:
Alternate peak demand:
See Design Note for considerations for estimating peak demand.

If source flow rate is close to or less than Peak Demand, consider storage alternatives (see 2nd Tab).
If source daily gield is less than Daily Demand, consider an alternate or supplemental water source.

3) Design Parameters

a) Trough Information
b) Pipe Information

= Pumping Rate

 fpsc) Yertical Pumping Distance

Pipe length to farthest watering point: Add 10% for slope and fittings: Total friction loss:
Total friction loss:

Pipe pressure rating:
72% of rating (See VA CPS 516)

reet psi
\square psi
psi Compare with result in Step 5b

4) Pump and Pressure Tank Design

b) Pressure Sritch Settings Based on System Load:

Low pressure switch setting: High pressure switch setting: \square psi (Minimum is 20 psi.) psi (Max. is usually 80 psi.) a high pressure switch setting of 80 psi or more is required, consider alternate design or high pressure-rated tank
d) Minimum Effective Drawdown for Pressure Tank:

Design pumping rate of
Minimum pumping time of
Minimum pressure tank volume o \square gpm : 1 minute =

This is the minimum drawdown volume required to allow the pump to run for at least one minute before shutting off. A larger volume can be used.

5) Static Pressure Checks

a) Static pressure at pressure switel Elevation of highest point: Elevation of pressure switch: Low pressure switch setting Static pressure on switch = \square pssi
b) Check static pressure at lowest trough:

Elevation of pressure switch: Elevation of lowest trough: Difference:
Add high pressure switch setting:
Total pressure at lowest trough:

Orange cell: pressure exceeds max float value pressure; red cell: pipe pressure limit erceeded. Check troughs at higher elevations if pressure is excessive at lowest

trough.

Virginia Livestock Watering Systems - Pressure-Energy/Gravity Flow Worksheet

1) Assistance Information

Cuztomer:
Count
Assisted By:

Proiect Notes:

Frint Page

Clest Dats

2) Water Budget

a) Total Daily Yater Demand

Type of livestock:
Number of Animals:
Wuter demondíanimalida
Total Dosily Demand:

Total Daily Demand:	
See Design Note for watering recomed	

b) Daily Peak Yater Demand

No. of times herd drinks/dou: \qquad events Time desired to water her \qquad
Alternste pesk demond: $\quad \mathrm{gpm}$
See Design Note for considerations for estimating peak demind.

c) Eralazte Source

Source flow rate:
Source dsily yield: $\quad \square$
If source flow rate is close to or less than Peak
Demand. consider storace alternatives.
If soarce daily gield iz lese than Dily Demond,
conzider an alternate or zupplemental water zource.

3) Design Parameters

a) Trongl Information

Trough tupe sel:

\qquad ∇ $\square \mathrm{gPm}$ Select flow rate to troughe as guided by Step 2 and Design Note. Typical design flow rates are: 8 gpm for frost-fres troughz; 5 gpm for storage troughs.
Maximum float valve preszure, if applicable: \qquad Typical values range from 75-140 pei. Check manufacturer's recommendstions.

Minimum flost valve preszure, if spplicable: $\quad \square$ psi Varies depending on type of float. Use monufacturer's recommended minimum. Typical value is 10 psi.

See Design Note or EFH Ch. 12 for guidance on pipe sive selection.

b) Pipe Information

Pipe materisl:
Pipe nominal diameter:
Pipe avg. inner diameter:
Pipe croze-sectionsl ares: K_{P} (hesd lose coefficient) Velocity check ($<5 \mathrm{fp} s$):

If velocity is greater thon $5 \mathrm{fp} s$, consider a larger diameter pipe. Note: For flows greater than design flow, velocities will be greater. Pipe pressure ratinq: 72% of rating (\sec VA CPS 516):

c) Gravity System Parameters

Reseryoir gnd eley or apring box outlet eley: Reservoir depth below ground ('typically 6) Reservoir bottom (elev for computing hesd

4) Flow and Static Pressure Checks TROUGH ELEYATIONS:
Enter trough elevations from survey data. For cascade-type syatems, enter trough elevations in order from highest to lowet.

Trough ID and Type	Trough Ground Elev. (ft)	Estimsted Wister Surface Elev. (ft)

Trough water surface elevation is azsumed to be 2 ft
sbove ground elevation.

CALCULATIONS FOR FLOAT-YALYE SYSTEHS:

Troughe are tee-ed off from the main line, with flow to esch trough controlled by a flost valve. Pipe length is meseured from the reservoir or spring box.

Pipe Length from Reservoir or Spring Box to Trough (ft)	Hesd from Reservoir or Spring Box (ft)	Maximum Flow Rite (9pm)	Static Pressure (psi)

Flow calculatione azsume s float walve efficiency of 80%. For flow rates lesz than the design rate (yellow cellz), (zuch s HETT or concrete). If static prezzures exceed the manufacturer's recommended maximum for the flost valve, consider using a preszure reducer, adjusting the orifice, or relocating the trough. If atatic preszures are lezs thon the recommended minimum (red celle), consider moving the trough to a lower elevation. Celle are coded orange for

CALCULATIONS FOR CASCADING SYSTEMS

Troughs are connected in series by way of their overflow pipes.
Pipe length for Trough 1 is messured from the apring box.

Sub-Syatem	Pipe Length from Trough sbove (ft)	Head from Upper Trough (ft)	Mox. Flow Rote (gpm)	Air lock canbes problem in spring-fed syateme due to dizzolved oxygen. Use
Springbax-T1				$1-1 / 2$ " for pipe grades bewteen 0.5-1.0\%. Use a minimum pipe dismeter of $2^{\prime \prime}$ for pipe grades lese thon 0.5%. Sce EFH Ch. 12.
T1-T2				
T2-T3				
T3-T4				
T4-T5				
T5-T6				
T6-T7				
Ti-T8				Frint Psge
T8-T9				
T9-T10				Clear dos

For flow rates lese thon the design rate (yellow cells), consider modifying the system or using lorger volume troughs. If trough inflow rate exceede trough outflow rate (red celle), oflow restrictor, larger pipe diameter, or change in trough location may be necezsary. This may not be on izsue if source flow rate is always lese than the maximum flow Dossible.

Example

Contractor tells the pump supplier:

"I need a pump that will pump 6gpm at 490ft. of total dynamic head."

Mryinth Department of Conserwation \& Recreacion

10 GPM

Submersible Pump Curves

- 490' of head - 6gpm
- Use the 1hp, 10gpm pump

Wryinti- Department co Conecration \& Recreasion

5 GPM

Submersible Pump Curves

- 490' of head

- 6gpm

The 1.5hp 5gpm pump is the closest fit.

Mreinh Department of Conserwation \& Recrearion

Sizing Pressure Tanks

NOTE: This is a separate example from the pump sizing example.

From "Pressure System Worksheet":
d) Minimum Effective Dravdovn for Pressure Tank:

Design pumpingrate of
Minimum pumping time of
Minimum pressure tank volume c

8.0	gpm :
1	minute $=$
8.0	gallons

This is the minimum draw down volume required to allow the pump to run for at least one minute before shutting off. A larger volume can be used.

Effective Drawdown Volume = Total Tank Volume x Drawdown Factor
Drawdown factor depends on pressure switch settings.
Assume 40/60 pressure switch settings. What is the minimum tank size?

Maximum 5ystem	Mimimum System Pressure (cut-in) - PSWG / (kPa) / bar													
Psic/ (kPa) / bar	$\begin{aligned} & 20 \\ & (138) \\ & 1.38 \end{aligned}$	$\begin{gathered} 25 \\ (177) \\ 1.72 \end{gathered}$	$\begin{gathered} 30 \\ (207) \\ 2.06 \end{gathered}$	$\begin{gathered} 35 \\ (242) \\ 2,41 \end{gathered}$	$\begin{gathered} 40 \\ 1269 \\ 276 \end{gathered}$	$\begin{gathered} 45 \\ (311) \\ 3.10 \end{gathered}$	$\begin{gathered} 50 \\ (345) \\ 3.45 \end{gathered}$	$\begin{gathered} 55 \\ (380) \\ 3.80 \end{gathered}$	$\begin{gathered} 69 \\ (414) \\ 4.16 \end{gathered}$	$\begin{gathered} 65 \\ (449) \\ 4,48 \end{gathered}$	$\begin{gathered} 70 \\ (483) \\ 4.83 \end{gathered}$	$\begin{gathered} 75 \\ (518) \\ 5.17 \end{gathered}$	$\begin{gathered} 80 \\ (552) \\ 5.51 \end{gathered}$	$\begin{gathered} 85 \\ (587) \\ 5.86 \end{gathered}$
$30 /(207) / 2.06$	0.21													
$35 /(242) / 2.41$	0.28	0.19												
$40 /(275) 12.75$	034	0.26	017											
45/(314)/3,10	0.39	0.32	0.24	0.16										
$50 /(345) / 3.45$	0.44	0.37	0.30	0.22						C			0	
$55 /$ (380) / 3.80	0.47	0.41	0.34	0.28	3	0.14		,	-					
	vavo	य大*	पes5	U130	0.26		0.13							
65 / (449)/4.45	0.53	0.48	0.42	0.36	0.30	0.24	018	0.12						
$70 /(483) / 4.83$	0.58	0.50	0.45	0.40	0.34	0.29	0.23	0.17	0.11					
$751 / 518) / 5.17$		0.53	0.48	0.43	0.38	0.32	0.27	0.22	012	0.11				

Min. Total Tank Volume = Effective Drawdown Vol. Drawdown Factor

Minimum Total Tank Volume = $\mathbf{8}$ gallons $/ \mathbf{0 . 2 6}$
$=31$ gallons
The tank must have a total volume of at least 31 gallons to let the pump run for at least a minute.

Maximurn System Pressure (cut-out) PSIG / (kPa) / bar	Mimimum System Pressure (cut-in) - PSIG / (kPa)/bar																		
	$\begin{gathered} 20 \\ (138) \\ 1.38 \end{gathered}$	$\begin{gathered} 25 \\ (173) \\ 1.72 \end{gathered}$	$\begin{gathered} 30 \\ (207) \\ 2.06 \end{gathered}$	$\begin{gathered} 35 \\ (242) \\ 2.41 \end{gathered}$	$\begin{gathered} 40 \\ (276) \\ 2.76 \end{gathered}$	$\begin{gathered} 45 \\ (311) \\ 3.10 \end{gathered}$	$\begin{gathered} 50 \\ (345) \\ 3.45 \end{gathered}$	$\begin{gathered} 55 \\ (380) \\ 3.80 \end{gathered}$	$\begin{gathered} 60 \\ (414) \\ 4.16 \end{gathered}$	$\begin{gathered} 65 \\ (449) \\ 4.48 \end{gathered}$	$\begin{gathered} 70 \\ (483) \\ 4.83 \end{gathered}$	$\begin{gathered} 75 \\ (518) \\ 6.17 \end{gathered}$	$\begin{gathered} 80 \\ (552) \\ 6.61 \end{gathered}$	$\begin{gathered} 85 \\ (587) \\ 5.86 \end{gathered}$	$\begin{gathered} 90 \\ (621) \\ 6.20 \end{gathered}$	$\begin{gathered} 95 \\ (656) \\ 6.56 \end{gathered}$	$\begin{aligned} & 100 \\ & (600\} \\ & 6.89 \end{aligned}$	$\begin{aligned} & 105 \\ & (725) \\ & 7.24 \end{aligned}$	$\begin{aligned} & 110 \\ & 1759) \\ & 7.68 \end{aligned}$
$30 /(207) / 2.06$	0.21																		
$35 /(242) / 2.41$	0.28	0.19																	
40/(276)/2.76	0.34	0.26	0.17																
$45 /(311) / 3.10$	0.39	0.22	0.24	0.16															
50/(345)/3.45	0.44	0.37	0.30	0.22	0.15														
55/(380) /3.80	0.47	(1) 41	0.34	0.28	0.21	0.14													
$60 /(414) / 4.16$	0.50	0.44	0.38	0.32	0.26	0.19	0.13												
05/(449)/4.48	0.53	0.48	0.42	0.36	0.30	0.24	0.16	0.12											
70/(483)/4.83	0.56	0.50	0.45	0,40	0,34	0.29	0.23	0.17	0.14										
75/(648)/6.17		0.53	0.48	0.43	0.38	0.32	0.27	0.22	0.16	0.11									
$30 /(552) / 5.51$			0.50	046	0.41	0.36	0.31	0.26	0.21	015	010								
$85 /(587) / 5.86$				0.46	0.43	0.39	0.34	0.29	0.24	0.20	0.15	0.10							
90/(621)/6.20					0.45	0.42	0.37	0.32	0.28	0.23	0.19	0.14	0.09						
05/(656)/6.56						0.44	0.40	0.35	0.31	0.27	0.22	0.18	0.13	0.09					
100 (690)/6.89							0.42	1138	0.34	प 30	0.26	0.21	017	0.13	0.09				
105/(725)/7.24								0.41	0.37	0.33	0.29	0.25	0.20	0.16	0.13	0.08			
$110 /(759) / 7.56$									0.39	0.35	0.31	0.27	0.24	0.20	0.16	0.12	0.08		
115 (794) 77.92										0.38	0.34	0.30	0.26	0.23	0.19	Q. 15	0.11	0.08	
$120 /(828) / 8.27$											0.36	0.33	0.29	0.25	0.22	0.18	0.15	0.11	0.07
125 / (363)/8.62												0.35	0.32	0.28	0.25	021	6.18	012	0.11

In keeping with current ndustry standarcs, drawdown tactors are based on Boyle's law, Actual orawdowns will yary
depencing upon system vanables incusho the accuracy and operaton of the pressure swich and gauge, actial
precharge pressure, and operating terpersture of the system.

DOT SP-11592

A WARNING compressed gas n.o.s.

ELECTROCUTION AND EXPLOSION HAZARD. Botore work is performed on the tank, tum off power to the pump ed neme al mate presure in the tark and pumping systern. Faiture to follow the instructions in accompanying pacie nanuf can cause a nypture of explosiont possibly causing sarious or fatal injury, leaking or flooding and/or riceti birnige

- tas apmesim nel valve as detoribed in the marual betiveen the pump and tark.
- Le arthparite wala. Do rot opernte in a setting where the ambient temperature can exceed $60^{\circ} \mathrm{C}\left(140^{\circ} \mathrm{F}\right)$

- biresanir

- Screnforent the plociut a nex and as depcibed in the manual.
"tetern flos of he miveti-
A CAUTION Test Pressure: manual can betrowed at mww amtrot corn
est Pressure: 150 Ps

M1001 -un

Pressure tanks and pressure switches need to be housed where they will be dry and will not freeze. High humidity environments (e.g. underground) will also shorten the lifespan of the pressure switch.

Considerations for Evaluating an Existing Pumping Plant

Information to Gather: Existing Systems

- Age and condition of pumping plant
- Existing Pumping Rate
- Existing Pressure Switch Settings
- Length and diameter of existing pipeline
- Evaluate for Friction Loss
- Existing Elevations
- Existing elevations need to be considered for the "High point to pump "to"" and "Elevation of lowest trough"

Hysnit Depatimert Conctrotion 8 Recreation

Existing Pumping Rate

- Why does the existing pumping rate matter?

1. Is the pumping rate sufficient to supply the livestock?
2. Should be used to determine friction loss (size the pipeline) if the existing pump will be used

- How to determine:
- If the well was installed recently, the pumping rate may be listed on the "Water Well Completion Report" at the Health Dept.
- Look for the pump capacity (different from well yield)
- Manual Pumping Rate Test:
- Find a hydrant (something with a full flow orifice) near the pumping plant
- Open the hydrant up and wait for the pressure tank to empty
- Once the tank is empty and the switch engages the pump, begin collecting the water in a container of known volume
- Time how long it takes to fill the container
- Divide the gallons filled by the time it took (in minutes) to come up with the pumping rate in GPM
- Where to input into worksheet:
- "Alternate Peak Demand" \rightarrow "Design Flow Rate"

- Also document well yield on worksheet

Pressure Switch Settings

 with Existing Pumps1) Complete the "Pressure System Worksheet" using the existing pumping rate

2) What pressure switch requirements are generated by the worksheet?
3) If the worksheet calls for pressure switch settings that are higher than the existing settings, the total head on the pump will increase, and the contractor/plumber will need to evaluate the impact on the pump

- This process is for planning purposes: Do we need to plan for a new pump?
- Sizing pumps is beyond the scope of our responsibility
- Leave it up to the professionals!

Mryinh Departmerte Constration a Recreation

Pressure Switch Settings Cont'd

- Increasing the head on the pump will reduce its pumping rate
- If you don't have info on the pump (model \#), you won't know how the pumping rate will be affected

Existing System: at 290ft. of head, 5 gpm pumping rate

Ex. Pump, New Switch: Increase pressure switch from 20/40 to 40/60, a net increase of 20psi.
20 psi * $2.31 \mathrm{ft} / \mathrm{psi}=46.2 \mathrm{ft} \approx 46 \mathrm{ft}$ of head New total head on pump: 290ft. $+46.2 \mathrm{ft} .=336 \mathrm{ft}$.

PUMP OPERATING RANGE
 New Pumping rate: $3^{1} / \frac{1}{3} \mathrm{gpm}$

?

Just remember: use the existing pumping rate as the "design flow rate" if using an existing pumping plant.
(Or, if the existing pump rate is inappropriate, plan for a new pump.)

Important Point for Existing Pumps:

Don't confuse flow rate and pressure!

- A high flow rate does NOT necessarily mean there is too much pressure
- Pressure is governed by the pressure switch
- A high flow rate (pumping rate) can actually mean there will not be ENOUGH pressure to overcome the higher friction loss associated with higher flow rates during the dynamic condition
- Friction loss is a REAL pressure loss

POP QUIZ

- What is wrong with this set-up?

Ram Pump

POP QUIZ

- What is wrong with this set-up?

Vyrinth Department ci Conserwation \& Recreacion

Case Study \#1: Multiple Sources Tied Together

- Originally designed as a pressure system, drilling a new well

2) Water Budget
a) Total Daily Water Demand
Type of livestock:
Number of Animals: Water demandlanimallday:
Total Daily Demand:

See Design Note for watering recommendations for various types of livestock.
c) Evaluate Source

Source flow rate:

Source daily yield:

19 gpm
1440
gpd

If source flow rate is close to or less than Peak Demand, consider storage alternatives (see 2nd Tab).
If source daily yield is less than Daily Demand, consider an alternate or supplemental water source.

2000gpd demand > 1440gpd supply *Well alone is insufficient

7. Pump Test

Water Budget/Reservoir Sizing

Assuming 3 drinking events:

Assumptions:									
Reservoir Recharge Rate from Well + Spring Development: 2.75 gpm									
1200 gallon reservoir $={ }^{\sim} 1000 \mathrm{gallons}$ of storage									
100 brood cows/pairs @ 20gpd = 2000 gpd									
$2000 \mathrm{gpd} / 3$ events $=667 \mathrm{gal} /$ event @ 12gpm delivery rate $=56 \mathrm{~min} /$ event									
Description	Water in Reservoir	Time Start	Time Stop	Total Time (min)	Delivery Rate (From Reservoir)	Recharge Rate (To Reservoir)	Net Per Min	Total Net	Water In Reservoir
Drinking Event 1	1000	9:00	9:56	56	-12	2.75	-9.25	-518	482
Recharge	482	9:56	12:00	124	0	2.75	2.75	341	823
Drinking Event 2	823	12:00	12:56	56	-12	2.75	-9.25	-518	305
Recharge	305	12:56	15:00	124	0	2.75	2.75	341	646
Drinking Event 3	646	15:00	16:47	56	-12	2.75	-9.25'	-518	128
Recharge	128	16:47	22:04	317	0	2.75	2.75	871.75	999.75

Note: This is a conservative method to ensure reservoir size is adequate, since the well pump will likely be designed to pump 2gpm (since that is the bottom end of the pumping range for 5 gpm pumps). The well is also checked to make sure that it will be adequate and will not be pumped dry to refill the reservoir.

Water Budget/Reservoir Sizing

Assuming 2 drinking events:

Assumptions:

Reservoir Recharge Rate from Well + Spring Development: 2.75 gpm
1200 gallon reservoir $={ }^{\sim} 1000$ gallons of storage
100 brood cows/pairs @ 20gpd = 2000 gpd
$2000 \mathrm{gpd} / 2$ events $=1000 \mathrm{gal} /$ event @ 12 gpm delivery rate $=84 \mathrm{~min} /$ event

Description	Water in Reservoir	Time Start	Time Stop	Total Time (min)	Delivery Rate (From Reservoir)	Recharge Rate (To Reservoir)	Net Per Min	Total Net	Water In Reservoir
Drinking Event 1	1000	9:00	10:24	84	-12	2.75	-9.25	-777	223
Recharge	223	10:24	14:00	216	0	2.75	2.75	594	817
Drinking Event 2	817	14:00	15:24	84	-12	2.75	-9.25	-777	40
Recharge	40	15:24	23:13	349	0	2.75	2.75	959.75	999.75

Note: This is a conservative method to ensure reservoir size is adequate, since the well pump will likely be designed to pump 2gpm (since that is the bottom end of the pumping range for 5 gpm pumps). The well is also checked to make sure that it will be adequate and will not be pumped dry to refill the reservoir.

Another Challenge: Elevation

Virginia Livestock Watering Systems - Pressure System Worksheet

4) Pump and Pressure Tank Design
a) Summary of energy requirements for the watering system:

Elevetion head.	675	OR.	156
Friction luss:	2.0	OR	E
Minimum forat valve pressurai	10	OR	23
Other		OR.	
TOTAL REQUITEMENTS:	79.5.5	OR	184

 soura un to the disivituilian :
aze the pumg for the propect

5) Static Pressure Checks

 a) Static pressure at pressure switch:if cuibe pressure on the swikn escerods /tw prassume roatch smiting (md cail, the pump sili not turn back an alles troughis vilisly Ineo sind tiren empbed.

Elevation of highest poirt: Elevation of crassure switcf: Law pressum suitich natting =

Stasce pressure on swich =

b) Pressure Switch Settings Based on System Load:

 high prescime-cited triek.
d) Minimum Effective Drawdown for Pragsure Tank:

Design pumping rate of Minitum pumping lime of Mintruim pressiere tank yotune of Minjoum pressiare tank yoi
pit
\qquad 2. 1 gom x minute = 12.0 geslone
 ine pump to rui tor al teasi one remula betore shulting off A larger sulume can bes used,
b) Check static pressure at lowest trough: Elevation of grossure swatct: Elevabinn of icwest trough: Eevabin of
Difflerence
Add tigh pressure swith setting Total praspure at lowest trough

Orange cue pressuic atcaets maa floar vitue pressian, rad cek ppe pressure imit euceeded. Ciocs truughs at higher elayators if prossuru is mincessivm it lowen trough.

Irough Supply Line Orean Detoll

1. Instal all pipelines coconding to Virgieid Construction Spocification Plastia Pipe (Vh-745)
 noinimum of two feet in the ground.
2. The pipe tremch must be free of loosin rocker bulore instolling the pipeline in cocily soils, bed the pipel in beidected naglerial free of racks of the pippline may bin placed in a a aceve. The pipeline will be preasure tested of the warking beod prior to bothraing. Kiepair any leaks and repeat the test Compoct at bockfil for underground plpes to the degree requared to prevent the ditch from corving after oonstruction.
3. Gruce all pipelinea with gravity fiows to provent unvented crests in the pipelineas: These unvented erosta will coupe grovity plpolines to oir lock and not Bow

$$
1+2=12
$$

Design Parameters	
Eatimoles Tatal Daly Dament -	$2000-600$
	4320
Eatmatied Prok Disome -	12 LTM

Pipeline Dato	
	2%
	SOI40 PVC (大STM D178S) and SCH80 PVC
	2 in
	SCM40 PVC (ASTM D1785) and SCH80 PVC

Adrional Phetire Netes: See standard notes below.

Pumping Plant Data *Calculations are for pump in reservoir,	
1sow Comud Dpome thod -	236 A
	12 5\%M \} कol pamp in
Fresuure Reques for Pimsine kate sbow =	- pas reserikir
	12 Ed
	80/300*/wer pa
	Use float Switch E 7 7 on well pump
	Use Float Switch Mims
	1.2000 cal

Construction Nates
 subgrade. noliading sod the bose surfabe sol shail be refnaved to indisturand moteriai.

 reinforcing shail be used in the 4^{\prime} gob.
2. Position the neat sell and pipsines per mainutdeture's recommendatiors. Five ccncrete founsotion dimeraians recommented by the manufacturer vill be usod if the dimentiogs are logeer than those if

4. A valve ahail be instaled in the espply piperine to requiste tlan to the fraugh. The voive ahould he
 4 moons of adining the supply pipeine betseen the volve und the trougt thal be prawided.
3. All bockilil for piosines under the trough shall be compacted to the degrae requiced to prevent soeing
 vOOT \& 21 or cruaber non
6. The trougt site andil be tree fraining
7. A pratective suriace shall be placed pround the trough. Ah the mimum, natal pootextile fobne around the trough ond then ploce VDOT 53 , YDO $121 / \mathrm{h}$ or crashisn rum around the trough sia inches peap Other types af moterials inay ve instolled with aporoval of the desprer The pooknctive surtace shol extena at leest II feat from each side if the trough
8. Coblextike shol meat the Class i requirements for nofuaven geatextile in Virginis Construction Scesification Dectestics (hai-795). Elass I may be sued with nogineers opproval:

Case Study \#2: Meeting Spring Development Criteria with No Float Valve

- 35 cow/calf pairs
- Landowner trying to keep cost down
- Generating enough fall for a frost-free trough with float would've required much more pipe length

Source Flow Rate Evaluation

- Will the livestock use less than 25% of the daily yield of the spring?

c) Evaluate Source Sourca ficow rate:
Source daily yield:
if source flow rate is close to or less than Pesk
Demand consider storace alternatives.
If source daily yield is less than Daly Demand,
ponsider an alternale or supplemental water source.
$\mathbf{2 5 \%}$ of $\mathbf{2 8 8 0 0} \mathrm{gal}=\mathbf{7 2 0 0 g p d}$

875gpd << 7200gpd

scale: $1^{\prime \prime}=30^{\circ}$

How much water can the orifice of the 2" supply pipe to the trough accept?

Head on Orifice:
Water Level: 1889.28
Center of 2" Pipe: 1889.04
Head $=1889.28-1889.04=0.24$
Weir Flow Drifice Flow | Circular Section | Parabolic Section

- Solution of Orifice Flow Formula -

$$
\begin{aligned}
& \mathrm{Q}=\mathrm{Ca} \sqrt{2 \mathrm{gh}} \\
& \text { Where } \mathrm{g}=32.2 \mathrm{f} / \mathrm{sec}^{2}
\end{aligned}
$$

$\mathrm{Q}=0.05 \mathrm{cfs} *(7.48 \mathrm{gal} / \mathrm{cf})^{*}(60 \mathrm{sec} / \mathrm{min})$
$=22.44 \mathrm{gpm}$
Therefore, the orifice will not limit the flow to the trough.

How much water can the supply pipe carry to

the trough?

- Assume cattle have consumed water so that only 6" of water remains in the trough.
- Elevation difference between water level in spring and water level in trough is 1.6'.
recommended minimum. Typical value is 10 ps .

Flow and Static Pressure Checks TROUGH ELEVATIONS:
Enter trough eievations from survey data. For cascadetype systems, enter trough elevetions in order from
highesi to lowest.

Trough ID and Type	Trough Ground Elev. (fi)	Estimated Water Surface Elev. (f)
Til Stirage	18957	72 1887.7
*		
*		$11.3 n$
∇		mitre m-
*		dSaR 6 t dav/7
-		G"ost JE Jothen
*		
*		
*		
*		

Trough water surface elevation is assumed to be 2 \# above ground elevation.

CALCULATIONS FOR FLOAT-VALVE SYSTEMS:
Troughs are see-ad off from the mein line, with flow to each trough controlled by a float value. Pipe length is massured from the reserwoir or spring box

Pipe Length from Reservoir or Spring Box to Trough (ft)	Head from Reservoir or Spring Box (ft)	Maximum Flow Rate (gpm)	Static Pressure (psi)
230	1.6	13.7	1.5

Flow caloulatione assume a float vatve efficiency of 80\%5. For flow rates lass than the desgn rate (yellowcelis), corisider modifying the systec or using storage troughs (such as HETT or concrete) If static pressures exceed the menufacturer's recormended maximum for the float valve, consider using a pressure reducar, adjusting the orifice, or relocating the trough. F static pressures are less then the recumrnended minimum (rad oplit), consider meving the trough to a lower elevation, Cells are cosed orange for static pressures axceeding either maximum recormended soat valve or pipe premures:

Flow rate is 13.7 gpm . This is much higher than the typical recommendation of 5 gpm for storage troughs.

1. Inatalif all pipelines accorcting to Virginia Construction Specifieation Plastie Pipe (VA-745).
2. Protect all plpelines from frost, livestock, ond equipment troffic, Where possibio, inatail pipsines a minimum of two feet in the ground.
3. The pipe trench must be free of loose rocks before instaling tha pipaline, In rocky aoils, hed the plpe in selected materiol free of rocks or the plpeline may be placed in a slesve. The pipeline will be pressure tested of the working head prior to bockfilling. Repair any leaks and rapeat the test. Compact ail bockfill for underground pipss to the degree required to prevent the fitth from coving ofter conatruction.
4. Grade all pipelines with gravity flows to prevent unvented crests in the pipeines. Thepe unvented arests will sause gravity pipelines to dir loch and not how.

Design Porameters		
Eatimated Totail Dally Demond =	175	58
Exilimalad Supply fnte (Stoin an an masurred vilise if the wat has not been comploted) =	30,000	${ }_{60}$
Erimated Fack Demand -	5	UFM

Watering Trough(s)			
Iype of Trough $=250 \mathrm{gat}$, ODrictete			
Nember of Trevgha $=1$			
Additionol Trough Nothe	Promeure resucers, high prneire flat valves. Whe.	Cortractor to soloct appo chart to lefit.	roonate ficat valyes tasec on calcilated statit pressures ! see

Pipeline Dota	
Noin Plpeire DYurneter =	2 in
Suppy Ploeline(a) (Short Latiercis to Traugh) Biammer =	N / A

Adeational Pipoine Nolake See standard notes below.

Pumping Plont Dato	
- Abive Giound Dynomit Heod -	Ft
Desited Pumping Rata -	SPM
Pramura Ragured for Pumping Rote: abovn =	P94
	Cal 4.4
	1 w/se Pest
	5
For Systems ysing a Forservaio - Lengith of Pumping intorvaly -	Vira
For Syatems yerrg a Reservori.: Aoservar Capecily (usuolfy a 3 day eupply) -	Gol
Ovartlog-pritieotion is requitad tor rosemoins Pressure tank must be housed in a dry, fr	no that resenvor nvironment:

5. Install sufficient cutoff valves in the pipeine to allow control of wafer flow to the watering facilites. Install walves in a housing that is frost proof, welE drained, readily accessible and protented from livestock. A means of draining the water from pipelines not in use, will be providad.
6. Install a check valve (or backflaw praventor, if required) to prevent water from flowing back into the water source from a watering facility
7. Seed all diaturbed areas of the rates given in Virginio Construction Specificotion Soeding (VA-706), If soeding is done outside recommended seeding dotes, lise a nurse crap.

EFAVF BEECH TREE ROOTS

 INTACT REMOVE GRALEL AND SEDINENT FROM CHANEL DCTON BEFURE INSTAUING $\#$ ST ANDCOLLECTION BOX.
imperviaus walls of sther materials and smapen may be used Hond draw the intended wail and dimension it accordingly. Wails are generaily consincter of ciay of concrete

Plan Yiew of Spring Box

PVC Screen For Supply Pios
TI DRAN TROULSH FOR WINTERI2ATION OR MAIHTENANLE REMUVE FVGSLREEN ANL COLLAR ANO RYPLACE WITH 90 DEGRE'E ELBOW ANO AN RISFR PIPE , THFN OPEN PRAIN VALVE TO PRAIN LINE

Wall and Spring Bax Materials		
Item	Size	- Moterial
Spring Eox	$30^{\prime \prime} \times 30^{\prime \prime}$	conctete Weil casing
Gravel	$\begin{aligned} & D 50=75^{\prime \prime} \\ & \text { P100 }=1.5^{\prime \prime} \end{aligned}$	$V 007$ H57, clean stone
Supply Pipe triu Wal	$2 \prime$	Schr. 40 PVC ASTM RlTSS
Divertiow Pipe thry Wail	$4^{\prime \prime}$	Sctr, 4u PVCiASTM DI795
Impervious Wall	(aty y $13^{2} \times 3$)	Reinforced 5500 PSI Concrete.

Fipe diamster for all plpes
shown obove will be: 2^{11}
Nots:
Schedule 80 PVC pipe or Oalvanized Steel pipe in
Schedule 80 FXC pipe or Oalvonized Stee pipe is
required under the trough. Sch 40 PVC micy be used
with granulor bocklill.
Ah pipe inatalied under tha trough shell Sch, BO PVC of Galvanized steeL

What if we wanted to continue to a frost-free trough farther down the hill?

Construetion Notes

1. The ground undar and around the trough location shail be cleared of all matarial not suited for the subgrade, ineluding sod. All lonse surfoce soil shall be remaved to undisturbed moterial.
2. A valve shail be instalied in the supply pipaline to reguiate flow to the trough. The valve should be installed in a housing that is front proof, well drained, readily accessible and protected from livestock. installed in a housing that is front proof, well drained, readily accessible and protected fro
means of draining tha supply pipeine between the valve and the trough shall be provided.
3. All beckilil for pipeilnos undar the trough shall be compocted to the degree requirad to pravent coving after construction. Backfill under the trough may be select compocted eorthfill or granular fill such as VDOT $\$ 21$ or crumher run.
t. The trough site whall to trea droining.
4. A protective surface shall be placed around the trough. at the ininimum, install geotextile fabric around ine trough and then place VDOT $\$ 57$, VDOT $\$ 21 \mathrm{~A}$ or crushar run around the trough, 6 inchas deep (minimum). Other types of stone moy be inatalled with approval of the thesigner, The growel pod ahal sxtend ot least 8 feest from sach side of the trough.
5. An overflow/drain ine from the trough will be inatalied. The iniet for the overflow pipe ahall be protected from blockege by algoe or floating debris. The outiet shall be protected fromp ivestock.
6. Gostextile shail meat the Class I requiraments for nonwaven geotextile in Virginic Construction Specification Geotextiles (VA-795). Closs il may be used with engineers approval.
7. Saed af disturbed areas at the rates givan in Vireinia Construction Specifieation Seeding (va-706)

- If seading is done outside recommended seading cotess, a nursa arap is to be used.

What if we wanted to continue to a frost-free trough farther down the hill?

concrete Irough installation- side viez

Fipe diameter for all plpes
shown obove will be: 2^{11}
Nots:
Schedule 80 FVC pipe or Oalvenized SWO ripe is shown obove wif be: 2 requirod under the fratill

Al pipe inatalied under the trough shell sch. 80 PVC of Galvanized stee L
be constructed of the following materiots

Hatvy Une Area Fod ahall be
constructed of the foliowing VDOT \#5?, H21A or crishied Rurn

Construction Notes

1. The ground undar and around the trough location shail be cleared of all matarial not suited for the subgrade, ineluding sod. All lonse surfoce soil shall be remaved to undisturbed moterial.
2. A valve shail be instalied in the supply pipaline to reguiate flow to the trough. The valve shauld be installed in a housing that is front proof, well drained, readily accessible and protected from livestock. instalied in a housing that is front proof, well drained, readily aecessible and protected from
means of draining the supply pipeline between the valve and the treugh ahall be provided.
3. Al beckilil for pipeinnos undar the trough shall be compocted to the degree requirad to pravent coving after construction. Backfill under the trough may be select compocted eorthfill or granular fill such as VDOT $\$ 21$ or crumher run.
t. The trough site whall to trea droining.
4. A protactive surface shall be placed around the trough. At the minimum, install geotextile fabric around the trough and then place VDOT $\$ 57$, VDOT $\$ 21 \mathrm{~A}$ or crushar run around the trough, 6 inchas deep (minimum). Othar typas of stone moy be inatalled with upproval of the tesigner, The growsl pad ahal sxtend at least 8 fest from sach side of the trough
5. An overtiow/drain ine from the trough will be instalied. The iniet for the overflow pipe shall be protected from blockege by olgoe or floating debris. The outlet stial be protected fromp Fivestock.
6. Gostextile shoil meat the Class I requiramants for nonwaven geotextile in Virginic Construction Specification Geotextiles (VA-795). Closs il may be used with engineers approval.
7. Saed af disturbed areas at the rates givan in Vireinia Construction Specifieation Seeding (va-706)

- If seading is done outside recommended seading cotess, a nursa arap is to be used.

USDA

Subject: ENG-Guidance for Spring Developments

To: Anfon Schaeffer Area Engincer, Harrisonburg
Sharyl Ogle, Area Engineer. Christiansburg
Sean Kimmel, Area Engineer, Farmville Bill Widner, Area Engineer. Sruithfield

Date: January 10, 2017
File Code: $210-11$

The purpose of this memorandun is to provide guidance on planning designing and installing spring developments in accordance with Virginia Conservation Practice Standard (CPS) Spring Developroent (Code 574). This guidance also applies to the re-development of existing spring developments.

Springs can provide a reliable source of water in certain situations. However, there are environmentally sensitive areas that need to be examined when developing them. In order to maintain engineering quality and consistency, it is imperative that we are consistently using the same process and applying the same criteria. Below are items that need to be addressed for any spring development or re-development:

* The Area Engineer and the Area Resource Soil Scientist will work together to provide assistance to field staff in the planting and design of all spring developments.
A wetland determination is needed to verify if wetlands are present at or around the spring development location.

Complete the Wetlands attachment (attached) to the CPA-52 to document the plamed spring development. All requirements in the Wetland attachment must be met.
Perform a water budget analysis to determine the flow rate of the spring and the demand for liyestock water. The flow rate of the spring should be determined during the driest part of the year, typically in the summer months,
No more than $1 / 4$ of the flow from the spring can be removed. This is to ensurs that no more than $1 / 4$ of the original wetland is drained in accordance with the Food Security Act of 1985 ,

Flow-through (cascading) systems will not be allowed. When feasible, automatie valves, float valves, etce must be used to direct water (in excess of the amount for livestock needs) back to the spring head and through the entire wetland.

Case Study \#3: spr. Devw/ Float Valve

Fiom trough
 Frough Suaply Une Drein Detaif

 y*trs yale bok or lowatiur
 shwin an shoot 3 allaw
 se line to be n.sted a
 drained The ball volee s
 of the triath. To grain she line, eap whe a"riag pine in tinc, cap wive rage pive. pern the ball value.

Design Parometers		
	302	Bal
	P(a)	D0
Estmpiet Pees Densink -	4	30\%

Pipeline Data		
	Unde Moptise Mimeter $=$	7 *
		thb in
		NA
adtibasi Peoline Noter	ind poift dizilion (wories jpong)	

Pumping Plant Data	
Nowit fround Dypenic lead -	\%1
	15 m
	E.
	Ton
	w/w Pr
	tu
	10
	Tal

3. Install al pipeiner accorang to Viçinia Conitruction Specifiation Flastio Pipe (QA-745)
2. Protect all plpelines from frost, livesiock and sosipment truftce Where possible, Instell pipelinge a minimum of tra leent in the ground.
3. The piee tranch must be Fres of loose racks sofore hataling the pipolines in rocky solts, bed the pipe In selected material free of rosks of the plpeine may be platid in a slesse. The pipeline wit be posssira tanted at tha working head prolor to backiliing. Repoir any laoks and ropeot the tont. Consoct uil bachdil for cerderisuund pipen ta the thegree twotrad to powant the ditch from ouving aftar oorntruction.

1. Drode al poplines with gravby flows to prevert unverited crestr in the pipelinss. These umanted ensits sil exuse grovily plpalines to air lock and not flom.
2. Inatal sufficient cutoff watwer in the plosine to clifow cantrol of woter flow for the watining ratirtie hetal valves in a housing thet is troat proot, weil droined, roadly occessible and protected from lvestock a rieare of draining the wuter fram pipelinen not in uas, wil ber provided.
3. Hratal is sheck velve (er baskfiow priverter, if required) to prevent water frem tiowing bock into the water scurces from a watering focily.

Cansituction Notes

1. The qraund under and areund the trough losotion ahal be cleared of of material not suited for the

2. The concrete toundation for the trough shol satend a mivmum of 10^{2} post the adges of the trough
 reieforeing shat be tevel in the $\$^{\circ}$ sobl.

3 Rasilion tre hact whe ond pipwings per manutaclarer's iecommendationa. The soncrate foundation crnemaiane cecammerpleo by the manufocturer will be used if the timenisions cre larger than thote in ceste- 2 The treagh must be attaphed to the concrete foundatice per maritabturer's recommendations
4. A valke shall be instelied in thil supply pipeline fo regulate fiove to the trough. Tha valee ahould be frstoled in a housing that is frost proof, well droinod, reodly accessble ond pratected from inamioni A mezoss of thaining the wupply piparine besweth the valve ond the trough sholl be provided.
 SOOT $\$ 21$ or crusker rum
B. The trough site shatl bo tree droing

 Other typas of materigh may te instolled wit afprovil of tha designer. The pretective suiface ahal oxterd ot least E feet from each shde of the trough
 Spendicotion Govientilis (VA-795) Gloss II moy bo used with enginners epprovel
g. Bend all cifturbed dreas of IFe roles given in Wrgine Ponatrustian Sperificatian Seeding (Vh-706).

* If seabing as done outside reoommended senting dotes, a mursm crop is to hemend.

Virginia Livestock Watering Systems - Pressure-Energy/Gravity Flow Worksheet

1) Accictanco Information

2) Water Budget
a) Total Daily Water Demand

Type of livestock:	cattle	
Number of Animals:	3	
Water demand/animaV/day:	20	
gotal Daily Demand:	60	

See Design Note for watering recommendations for various
types of livestock.

3) Design Parameters

a) Trough Information

		2 ball float
Trough type(s):	Alternote Pesk Demond	4.0
Design flow rate:	gpm	

Design flow rate: \qquad Alternote Pesk Demond $\quad-$ Select flow rate to troughs as guided by Step 2 and Design Note. Typical design flow rates are: 8 gpm for frost-free troughs; 5 gpm for storage troughs
Maximum float valve pressure, if applicable: $\quad 80 \mathrm{psi}$ Typical values range from 75-140 psi. Check manufacturer's recommendations.

Minimum float valve pressure, if applicable recommended minimum. Typical value is 10 psi .

Project Notes:
Print Page

Clear Data

Spring development to supply water to one two-hole frost-free trough. Spring yield in mid-July is 0.6 gpm . Livestock will use less than 10% of the spring's daily volume, and the collection box will overflow into the channel above the wetland area.
b) Daily Peak Water Demand

No. of times herd drinks/day Time desired to water herd: Average peak demand: Alternate peak demand:
\qquad 3 events

See Design Note for considerations for estimating peak demand.

See Design Note or EFH Ch. 12 for guidance on pipe size selection
b) Pipe Information

Pipe material:
Pipe nominal diameter:
Pipe avg. inner diameter:
Pipe cross-sectional area Kp (head loss coefficient) Velocity check ($<5 \mathrm{fps}$):

velocity is greater than 5 fps , consider a larger diameter pipe. Note: For flows greater than design flow, velocities will be greater. Pipe pressure rating:
72% of rating (See VA CPS 516):

c) Gravity System Parameters

Reservoir gnd elev or spring box outlet e 100 ft
Reservoir depth below ground (typically 6'): \qquad

Source flow rate:	0.6
Source daily yield:	864
If source flow rate is close to or less than Peak Demand, consider storaqe alternatives. If source daily yield is less than Daily Demand, consider an alternate or supplemental water source.	

Pumping rate should not exceed source
d) If Pumping to a Reservoir: rate.

Desired pumping rate to reservoir:	gpm
Pumping duration required to meet daily demand:	min/day
Ground elevation of water source:	ft .
	ft .
Static pressure in pipe (check against max. allowed):Dynamic Head Calculations:	psi
Pipe length to reservoir:	ft
Add 10\% for slope, fittings:	ft
Friction loss/100':	$\mathrm{ft} / 100 \mathrm{ft}$
Total friction loss:	ft

Note: If total friction loss exceeds 23.1 ft (10 psi), consider choosing a larger pipe diameter

| Dynamic Head added to pump by |
| :--- | ---: | :---: |
| pressure component of system: | | Friction + elev. |
| :---: |

4) Flow and Static Pressure Checks

 TROUGH ELEVATIONS:Enter trough elevations from survey data. For cascade-type systems, enter trough elevations in order from highest to lowest

Trough ID and Type	Trough Ground Elev. (ft)	Estimated Water Surface Elev. (ft)
T1: Freese-Proof	84.5	86.5

CALCULATIONS FOR FLOAT-VALVE SYSTEMS:
Troughs are tee-ed off from the main line, with flow to each trough controlled by a float valve. Pipe length is measured from the reservoir or spring box.

Pipe Length from Reservoir or Spring Box to Trough (ft)	Head from Reservoir or Spring Box (ft)	Maximum Flow Rate (gpm)	Static Pressure (psi)
234	13.5	39.8	6.7

CALCULATIONS FOR CASCADING SYSTEMS:

Troughs are connected in series by way of their overflow pipes
Pipe length for Trough 1 is measured from the spring box.
Subsequent lengths are measured from the previous trough.

| Sub-System | Pipe Length
 from Trough
 above (ft) | Head from
 Upper Trough
 (ft) | Max. Flow Rate
 (gpm) |
| :---: | :---: | :---: | :---: | | Air lock can be a |
| :--- |
| Problem in spring-fed |
| systems due to |
| dissolved oxygen. |
| Use a minimum |

Case Study 4: Lake Pick-Up

- Very remote (no grid power)
- Only water source is still water
- Near stream entering lake
- Challenge: Sediment

South-Facing Slope

(but need panels to be above the shadow of the treeline)

Sediment

TBM 1 Ansumed Eo
Top of stake next to 10 im . DBH harcwood tree approx. 100ft. West of the collection box (approx 20ft. from water's adge). Desoription:-
N/A

Notes

- The landownar/apovator in resporisibia for ostoinirg ond pompiying with all permits and easementa This ineludes all tedercl, atate and local parmits.

2. The landawner/operctor is responsiblo for zhecking and complying with dill losol ordinances that moy offect tha project.
3. MISS UTIUTY (Virginia telaphone number 811) must be contacted at least 3 warking days before
 withim 24 hours upon raquest by the DCR/SVICD representetive. The landewne/overator ie
 sawer lines, ele.) In the work area that are not edvered by the MISS UTLUTY aregrams.
4. DCR/SWCD makies no reprasentation of the axistenco of nonaxistences of utilities. The presenios or dommes of utilitims on the
infuties in the work orso.
․ The epntractor is rasponslble for knowing and follawing the appropriata zofoty standardes requirad by the Mroinia Satety and Hisalth Codes Baard.
5. The landowner/aperator shail votify the DCR/SWCD representative of least ane Weak prior to beplaning construction, and ot all other timies specilied in this conatruction plan and otteched
6. Ary devation from these construction drawings and apeciticotiong without aitten approval from OCR/SWCD reprasentative may resuit in in follure of kiss proctice to mest NRCS Standards and the withutawd of tectiniedl assistonce. for this projec.
7. Prior to beginning tounstruction, the caver sheet must be signed by the landowner/operator, the zontractar, and the aCri/SWco representotive. The landomer/operotor ad responsible for informing the contractor of thess responsibistias by providing the contructor a popy of this covar shioat and contractor must sign the cover shent aciknomedging thot theoe responaibilitios are undertaiva I requested by DCR/SWCD, the fiandowner/opardtor chall arrange for a meating between the A requeated by DCR/SWCD, the fandowner/oporatar ghall arrange for a meating between the constructlon.

The SWCD Representative (Inciude Tid SWCD office teiephone number ht SWCD office eddress is:

Banchmark Describtions

$$
\begin{aligned}
& \text { Evico Vana } \\
& \text { neid to scole }
\end{aligned}
$$

*Recommend one ber trough

1. Irstall aif pipelines according to Virginia Cunstruction Specifioation Plastic Pipe (VA-745),
2. Frotect all pipelines from frost, livestock, and equipment traffic, where possible, inatall pipelines a minimum of two feet in the ground.
3. The pipe trench must be free of lacse rocks before inetalling the pipellne. In rocky soils, bed the plpo in selected material tree of rocks or the pipeline may be placed in a sleevs. The plpoline will bo prassure tested at the working heod prior to backfllling. Repair any lesks and rapeat the test Compact all backfill for underground pipes to the degree reguirad to prevent the ditch from caving ofter construction.
4. Grade all plpelines with gravity fiows to prevent unvented crests in the pipsilinas, Thess unvented crests will couse gravity plpelines to air lock and not flow.

Design Paramaters		
Eatimotad Tatel Doily mamani $=$	300	Gol
	∞	GPD (Lake)
Esteruted Poak Verriond $=$	5	394.

Watering Trough(s)
Type of Trough $=$ Concrete Storage (500 gallon)

$$
\text { Nember of Trouple }=2 \text { in trandem }
$$

Nole: in irougha are ts be instaliod en short iateral pipelinas (Supply Pipaine) with a shat-off valive and train waives for nupply pipsiline

Pipeline Data	
Main Apalion Diomater -	1 h
Main Preihe Type (PE, SCH 40 FVC, Ptaj) und ASTH io	PE (560nsi. AstM O28391 Cr SCH40 PVVC SASTM D1785)
	$\mathrm{N} / \mathrm{A} \mathrm{h}$
Supply Prowint Type (PE, SCH 40 PVC, alc.) and ASTM f -	

Hon Phena notar. See standard notes below.

Pumping Plont Dato	
Above Grount Dynarile tient $=$	70 E\%
Oxemirad Famping Rata -	5 Holim
Prmesurs Requivei tor Flanpiond rate above $=$	- ta
	N/A ba
For Sysieme lieing Prossure Trike... Pesseurn sxith beltinge urs -	
For Sydians. saing a Resarnit... Fumpligg litevois per doy -	N / A to
For Systuma using a Reaskoir... Langth of Purming intervals -	N/A Mins
	(1000) Eal

5. Install sufficient cutoft valves in the pipeline to allow control of woter flow to the wotering facilitiss. Instail valves in a housing that is frost proot, well droinsd, readly accessible and protected from livestock. A means of draining tre woter from pipelines not in use, will be provided.
6. Install a check volve (or backflaw preventor, if required) to prevent water from flowing bock into the water source from a watering facility.
7. Seed ail disturbed areas at the rates given in Wrainia Construction Specificotion Seeding (Vk-706), if seading is done outaide recommended seeding dates, use a nurse crop.

Mypint- Department of Constanation a Recreadion

शDCR

* NOTE: for solar system: 3 dayd of water storme is recommended.

Estimeled daily demond of this lieetiok herd is 300 ganllon s.
stimend concrete vauhs hald 400.500 gellont, 50 +wo traht

Construction Notes

1) The ground under and around the trough lacation shall be cleored of all materiol not suited far the subgrade. Inclucing sod. All loose surface soil shall be removed to unitaturbod material
2. A valve ahall be instaliod in the mupply pipeline to regulate liow to the trough. The vave shouid be installed in a houging that is frost proof, well droined, readily occessible ond protected fram lvestock. A mearss of stroining tha supply pipaline betwean the waive and the trough shail be provided.
3. Al backfll for pipelines under the trough shall be pompacted to the degree required to prevert coving ofter construation. Bockfill under the frough may be seiect cemoaeted earthfill or gronular fill such os (OOT \$21 or drusher ruth
4. The frough site sholl be free aroining

5. A protective surfocs ghall be placed around the trough. At the minimum, instell geotextie fabric argund the trough and then place VDOT 457, VDOT $\$ 214$ or crusher fun oround the trough, Six inches deep (minimum). Other types of stone may be installed with agorawol of the designer. The gravel pad shal extand of least 8 foet trom oach olfe of the trought.
6. An overllow/drain Sine from the trough will be inatalled. The inlet for the overflow pipe shall be protected from blockoge ty algae or floating debris. Tha outlet shail be protected from |wastock.
7. Geotextire shall meet the Closs I requirementa for nonwoven gootoxt/3a in Virainia Construction Specifitation Gistextles (Vh-795). Dlass if may be used with frgineors opsrowed
8. Seed oil disturbed aregs of the rates given in Virginio Eonslruction Speciticotion Seeding 〈VA-706〉.

* If seading is done antsida recommanded ssedirg datess, a purse erep is
 tant is NOT aisemtible is a traeh

Virginia Livestock Watering Systems - Pressure-Energy/Gravity Flow Worksheet

1) Assistance Information		Project Notes:	Installing s pond pickup to pump from the lake using s solsr pump to two storage troughe at the top of the hill. The troughe will function as a reservoir and will overflow back to the pond once they are full. Lake water level is 93.98 . Ground elewation at troughs is 155.11 (water level will be 157.11). Troughs will hold roughly 3-days of storage (1000 gallons).
Customer:	Whetatons		
County:	Buckinghom	Frint Page	
Dite:	$8 / 21 / 2017$		
Assisted By:	RC	Clear Data	

2) Water Budget

a) Total Daily Yater Demand Type of livestock:
Number of Animale:
W'ater demandionimiliday:
Total Daily Demand:

See Design Note for watering recommendations for warious types of livestock.
b) Daily Peak Yater Demand

See Design Note or EFH Ch. 12 for guidance on pipe size selection.

3) Design Parameters

a) Trongl Information

Trough tupese): \qquad Concrete Storage Select flow rate to troughe se guided by Step 2 and Design Note. Typical design flow rates are: 8 gpm for frost-fres troughz; 5 gpm for storage troughs.
Maximum float valve preszure, if applicable: $\square \mathrm{P}$ Typical walues range from 75-140 pai. Check manufacturer's recommendations.

Minimum flost valve preszure, if spplicable:

Vories depending on type of flost. Use monufacturer's recommended minimum. Typical value is 10 psi.

b) Pipe Information

Pipe materis:
Pipe nominal diameter: Pipe sug. inner diameter: Pipe crose-sectional ares: K_{p} (head lose coefficient): Velocity check ($<5 \mathrm{fp} s$):

If velocity is greater the 5 fps consider $1.9 \mathrm{fp}=$ Nelocity is greater than 5 fp , consider a larger diameter pipe.
Note: For flow greater than design flow, velocities will be gres Pipe preszure rating: 72% of rating (Sec VA CPS 516): $\quad 72$ p $\quad 7$

c) Gravity System Parameters

Reservoir gnd elev or spring box outlet ele 155.11 ft
Reservoir depth below ground (typicilly 6
Reseryoir bottom (eley for computing hes
c) Eralnate Source

Source flow rate: Source daily yield:

14400
Demand. consider storaae alternatives.
If soarce daily gield iz lese thon Diily Demond,
consider an alternate or supplemental water zource.

4) Flow and Static Pressure Checks TROUGH ELEYATIONS:
Enter trough elevations from zurvey data. For cascade-type syatems, enter trough elevations in order from highest to lowest.

Trough ID and Type	Trough Ground Elev. (ft)	Estimated Woter Surface Elev. (ft)
\pm		
∇		
\square		
\pm		
-		
-		
\square		
-		
\pm		
\square		

Trough water zurface elevation is assumed to be 2 ft sbove ground elevation.

CALCULATIONS FOR FLOAT-YALYE SYSTEMS:

Troughe are tee-ed off from the main line, with flow to each trough controlled by a float walve. Pipe length is meazured from the rezeryoir or spring box.

Pipe Length from Reservoir or Spring Box to Trough (ft)	Hesd from Rezervoir or Spring Box (ft)	Moximum Flow Rote (gpm)	Static Prezure (psi)

For for rations aszume a flost valve efficiency of consider modifying the zyztem or using storage trough (zuch sz HETT or concrete). If static prezzures exceed the monufacturer's recommended maximum for the flost walve, consider using a preszure reducer, adjusting the orifice, or relocating the trough. If static preszures are lezz than the recommended minimum (red cellz), consider moving the

CALCULATIONS FOR CASCADING SYSTEMS:

Troughe are connected in series by way of their overflow pipes.
Pipe length for Trough 1 is meszured from the apring box.

Sub-Syztem	Pipe Length from Trough sbove (ft)	Head from Upper Trough (ft)	Max. Flow Rote (gpm)	Air lock con be a problem in spring-fed zyztems due to dizzolved oxygen. Uze a minimum dismeter of $1-1 / 2^{\prime \prime}$ for pipe grades bewten 0.5-1.0\%. Uze a minimum pipe diameter of $2^{2 \prime}$ for pips grades lese thon 0.5%. Sce EFH Ch. 12. Frint Page Clear Data	
Springbax-T1					
T1-T2					
T2-T3					
T3-T4					
T4-T5					
T5-T6					
T6-T7					
T7-T8					
T8-T9					
T9-T10					

For flow rates lesz than the design rate (yellow cells), consider modifying the system or using larger volume troughs. If trough inflow rate exceeds trough outflow rate (red celle), o flow restrictor, larger pipe diameter, or change in trough location may be necesasy. This may not be an izzue if zource flow rate iz slways lezs than the moximum flow doszible.

Final Thoughts

- Plan the least-cost technically feasible alternative
- Make sure system you are planning has realistic materials
- Keep in mind:
- LWS Worksheet does NOT automatically check low points in pipeline
- LWS Worksheet assumes pressure switch is at the same elevation as the well (for above-ground head on pump calculation)

Don't be scared to ask for help!

Special Thanks To:

- Districts whose designs \& projects were featured
- All of you in the audience!

Contact Information

Amanda Pennington, P.E.
District Engineering Services Manager 804-786-0113
Amanda.pennington@dcr.virginia.gov

Raleigh Coleman
Ag BMP Engineering Specialist
540-270-0039
Raleigh.coleman@dcr.virginia.gov

[^0]: Tigare5. Vield ierans elapsed lime dering the purne lot of the waier weil

[^1]: * Cost comparisons assume an available water source is already present and are based on individual system cost and not a per-animal basis.

