Using the "Virginia Livestock Watering Systems" Worksheet

Designing Pressurized Livestock Watering Systems
Prince George Training
January 31, 2017
Raleigh Coleman, DCR

## Virginia LWS Worksheet

- Can be used to design...
- Pressure Systems
- Public Water Connection Systems
- Gravity Systems
- Select appropriate tab in Excel file
- VA NRCS Design Note 614 (DN-614) provides comprehensive guidance as well as 8 examples

圆 Fill－
2 Clear

## Virginia Livestock Watering Systems－Pressure System Worksheet

|  |  | Project Notes： |
| :---: | :---: | :---: |
| 1）Assistance Information |  |  |
| County： |  | Print Page |
| Date： <br> Assisted By： | 112612016 | Clear Data |

2）Water Budget

| 2）Water Budget <br> a）Total Daily Water Demand |  |
| :---: | :---: |
|  |  |
| Type of livestock： |  |
| Number of Animals： <br> Water demandianimaliday： |  |
|  |  |
| Total Daily Demand： |  |

b）Daily Peak Water Demand
Number of times herd drinksiday Number of times herd drinksiday Time desired to water herd： Average peak demand： Alkernacpak demand：$\quad \square \mathrm{gpm}$ estimating peak demand


source flow rate is close to orless than Peak Demand，consider storage
alternatives（see 2nd Tab）
If source daily yield is less than Daily Demand，consider an alternate or supplemental water source．


4）Pump and Pressure Tank Design
 Total Dynamic Head will equal this r ober plus the＇Lift Head required to get the water
from the source up tw the distributi
will be sed
$\qquad$
b）Pressure Suitch Settings Based on System Load
Low pressure switch setting： $\square$ psi（Minimum is 20 psi ．）
High pressure switch setting：$\square$ psi（Max．is usually 80 psi．）
a high pressure switch setting of 80 psi or more is required，consider alternate design or high pressure－rated tank．
d）Minimum Effective Drawdown for Pressure Tank：


This is the minimum draw down volume required to allow the pump to run for at least one minute before shutting off．Alarger volume can be used

Orange cell：pressure exceeds max float value pressure：red cell：pipe pressure limit enceeded． Check troughs at higher elevations if pressure is excessive at lowest trough．
$\qquad$
$\square \mathrm{p}$ psi

[^0]Pressure System Design

## Virginia Livestock Watering Systems - Pressure System Worksheet



## 2) Water Budget



## 4) Pump and Pressure Tank Design

o) Dynamio Hoad added to pump by the watering cyctiom:
$\qquad$ Dynamik hesd = higher swtch setting of pal $\times 2.31$ -
Total Dynamic Hesd will equal Eis number plus the 'Lt' Hesd required to ges the water from the source up to the diatribution syetem. The flow rate and the Total Dynamic Head will be used to ezze the pump for the project.
b) Preccure switoh settinge Baced on syctom Losd:

Low pressure swtch zetting:
Low pressure swich setting:
High presare swich zewing: $\quad$ pal (Max. is usually 80 pal.)
If a high preszure switch setting of 80 pal or more la required, conalder atemate design or
high pressure-rated tank.
d) Minimum Effeotive Drawdown for Preseure Tank:

Design pumping rate of Minimum pumping time of Minimum pressure tank volume of $\square$ galons

This ts the minimum drawdown volume required to alow the pump to run for at least one minute before ahuting of: A larger volume can be used.
5) Static Pressure Checks
a) statio procture at procecure ewitoh:

If atatic pressure on the switch exceeds low pressure switch setting (red cell), the pump will not tum back on after trough is initialy flied and then emptied.

b) Cheok ctatio preccure at lowect trough: Elevation of pressure swith: Elevation of loweat trough: Demerence: Add high pressure switch setting: Total pressure at lowest trough:
 OR

Orange cel: pressure exceeds max float valve preasure red ceil ppe pressure imit exceeded. Check troughs at higher eievations if pressure is exceastre at lowest trough

|  | psi |
| :--- | :--- |
|  | psi |
| psi |  |

## What is a "Pressure System"?

- Water supplied via a pumping plant
- Pump: moves water through the system
- Pressure Tank: maintains pressure when the pump is not running
- Pump Switch: tells the pump when to run
- Troughs on Float Valves to contain pressure (and water)



## What is the purpose of the worksheet?

TRUE or FALSE: The purpose of the "Pressure System Worksheet" is to size the pipeline.

The worksheet has many purposes, not just sizing the pipeline.

## What is the purpose of the worksheet?

- Evaluate the "Water Budget": Is the water source adequate?
- Determine an appropriate design flow rate (pumping rate)
- Determine appropriate minimum pipeline diameter(s)
- Determine the energy requirements for the system
$\rightarrow$ Size the pump
$\rightarrow$ Determine the pressure switch settings
- Determine a minimum volume for the pressure tank
- Check for excessive static pressure at the pressure switch and at the trough float valves (and in the pipeline)
- Indirectly: Determine if components may need to be positioned differently on the landscape (or if an alternative system should be used) if energy requirements are excessive



## Dynamic Head

- Pressure when water is flowing in the system
- Depends on the initial pressure (determined by the pressure switch), differences in elevation, and friction loss from the movement of water through the system
- Importance: We need to determine how much dynamic head will be needed to make the system work properly (i.e. What is the minimum amount of pressure energy that will allow the system to deliver water to the troughs?).
- The energy requirements will determine the pressure switch settings and the dynamic head added to the pump.
c) Dynamic Head added to pump by the watering system:

Dynamic head = higher switch setting of

```
40 psi x 2.31 = प 92 feet
```

Total Dynamic Head will equal this number plus the "Lift" Head required to get the water from the source up to the distribution system. The flow rate and the Total Dynamic Head will be used to size the pump for the project.

## Example: What are the energy requirements to deliver water to Trough 1?

Total Energy Requirement = Elevation Head + Friction Loss + Float Valve Minimum Pressure


## Static Pressure

- Pressure when the system is at rest
- Friction loss is not a factor (water is not moving)
- Pressure will increase or decrease throughout the system based on elevation difference at each point from the pressure switch
- 1psi of pressure is gained for each 2.31 feet of elevation in a column of water
- NOTE: The width of the column of water does not matter! Only the vertical elevation change affects pressure in the system.
- Importance: We need to check to make sure that static pressure is not too high at low points in the system.
- Float Valves
- Pipeline

Prevent this from happening:


## Static Pressure Example

This system has a $40 / 60$ pressure switch at elevation $400^{\prime}$. What is the maximum static pressure at each point of interest?


## Completing the Pressure System Worksheet

## Virginia Livestock Watering Systems - Pressure System Worksheet



## 4) Pump and Pressure Tank Design



Dynamk head = higher swtch setting of $\quad \square$ psi $\times 2.31=\square$ feet
Total Dynamic Head will equal this number plus the 'Lit' Head required to get the water from the source up to the datribution system. The flow rate and the Total Dynamic Head will be used to elze the pump for the project.
b) Preccure switoh settinge Baced on Syctom Lasd:

$\square$
pal (Mnimum la 20 pal.) pal (Max. is usually 80 pal.) a required, conalderal pal.) high pressure-rated tank.
d) Minimum Effeotive Drawdown for Preceure Tank: Design pumping rate of Minimum pumping time of Minimum pressure tank volume
 gpm
minute
minute = galions

This is the minimum drawdiown volume required to alow the pump to run for at least one minute before shuting of. A arper volume can be used.


If static pressure on the switch exceeds low pressure satch setting (red cell), the pump will not tum back on after trough is initialy fled and then emptied.

Elevaton of higheat point: Eevalon of pressure switch: Low pressure swtch setting statc pressure on swlich -

psal
b) Cheok ctatio preccure at lowect trough: Elevation of presaure swith: Elevation of lowest trough: Elevation of

## Dilerence:

Add high pressure swtch setting: Total pressure at lowest trough:


Orange cel: pressure exceeds max float valve pressure: red cell pipe pressure limit exceeded. Check troughs at higher eievations if preasure is exceasive at loweat trough.
$\square$

## Project Notes

Virginia Livestock Watering Systems - Pressure System Worksheet


## Water Budget

## Virginia Livestock Watering Systems - Pressure System Worksheet



## 2) Water Budget:

This will be used to determine how much water the livestock need and compare it to the source to make sure that the water source is adequate and to help determine the pumping rate.

## See "Water Quantity Guidelines for Various Livestock" chart on page A-2 in DN-614.

## Talk to your producer.

- He/she should be able to provide more accurate water needs if they have filled stock tanks.
- For cow/calf operations, determine the likelihood that they will hold calves (could double the needs).
- Generally better to overestimate water needs (within reason). Thirsty cows will fight with each other for access to troughs, put more pressure on the stream fences, and spend more time in stream crossings.

Water Quantity Guidelines for Various Livestock

## DN-614, Page A-2

| Type of Livestock |  | Estimated Daily Water Consumption per Animal | References |
| :---: | :---: | :---: | :---: |
| Cattle | Beef adult | 15 | VA USDA-NRCS Introduction to Conservation Engineering |
|  |  | 8-12 | Structures and Environment Handbook (MWPS, 1987) |
|  | Calf | 5 | VA USDA-NRCS Introduction to Conservation Engineering |
|  |  | 1 to $1.5 \mathrm{gal} / 100 \mathrm{lb}$ body weight | Structures and Environment Handbook (MWPS, 1987) |
|  | Beef cow/calf pair | 20 | VA USDA-NRCS Introduction to Conservation Engineering |
|  |  | 6-18 | National Range and Pasture Handbook (USDA-NRCS, 1997) |
|  | Growing steers/ pregnant heifers | 6-18 | National Range and Pasture Handbook (USDA-NRCS, 1997) |
|  | Heifer | 10-15 | Structures and Environment Handbook (MWPS, 1987) |
|  | Milking cow | 30 | VA USDA-NRCS Introduction to Conservation Engineering |
|  |  | 10-30 | National Range and Pasture Handbook (USDA-NRCS, 1997) |
|  |  | 35-45 | Structures and Environment Handbook (MWPS, 1987) |
|  | Dry cow | 20 | VA USDA-NRCS Introduction to Conservation Engineering |
|  |  | 20-30 | Structures and Environment Handbook (MWPS, 1987) |
| Swine | Swine | 4 | VA USDA-NRCS Introduction to Conservation Engineering |
|  | Finishing swine | 3-5 | Structures and Environment Handbook (MWPS, 1987) |
|  | Nursery | 1 | Structures and Environment Handbook (MWPS, 1987) |
|  | Gestating sow | 6 | Structures and Environment Handbook (MWPS, 1987) |
|  | Sow and litter | 8 | Structures and Environment Handbook (MWPS, 1987) |
| Other Grazing Mammals | Horse | 12 | Structures and Environment Handbook (MWPS, 1987); VA USDA-NRCS Introduction to Conservation Engineering |
|  |  | 8-12 | National Range and Pasture Handbook (USDA-NRCS, 1997) |
|  | Llama | 4 | VA USDA-NRCS Introduction to Conservation Engineering |
|  | Sheep, Goat | 3 | VA USDA-NRCS Introduction to Conservation Engineering |
|  |  | 2 | Structures and Environment Handbook (MWPS, 1987) |
|  |  | 1-4 | National Range and Pasture Handbook (USDA-NRCS, 1997) |
| Poultry | 100 chicken layers | 9 | Structures and Environment Handbook (MWPS, 1987) |
|  | 100 turkeys | 15 | Structures and Environment Handbook (MWPS, 1987) |
| General | 1000 lb live weight (AU) | 30 | Indiana USDA-NRCS IN-ENG-Pipeline-4-09.x\|s |

## Total Daily Water Demand Example

## A producer has:

- 20 cow/calf pairs
- 1 bull
- 12 sheep
- 2 horses



## What is the "Total Daily Demand"?

"Pressure System Worksheet" only has room for one animal type. Quick calculations need to be done.

## Total Daily Water Demand Example

We confirm that the producer will absolutely sell his calves every spring. Use "Water Quantity Guidelines for Various Livestock" to determine total demand.

- 20 cow/calf pairs
- 1 bull

12 sheep
2 horses
$\times 20 \mathrm{gal} / \mathrm{day}=400 \mathrm{gal} / \mathrm{day}$
$\times 15 \mathrm{gal} / \mathrm{day}=15 \mathrm{gal} / \mathrm{day}$
$\times 3 \mathrm{gal} / \mathrm{day}=36 \mathrm{gal} / \mathrm{day}$
$\times 12 \mathrm{gal} / \mathrm{day}=24 \mathrm{gal} / \mathrm{day}$

## What is the "Total Daily Demand"? = 475 gallons/day

But the worksheet only allows you to enter number of animals and demand/animal/day...
475 gallons/day $\div 35$ animals $=13.57$ gal/animal/day. $\longrightarrow 14$ gal/animal/day. $=490 \mathrm{gpd}$ (conservative)

## Enter into worksheet:



## Water Budget

## Virginia Livestock Watering Systems - Pressure System Worksheet


b) Daily Peak Water Demand

Number of times herd drinks/day
Time desired to water herd:
Average peak demand:
Alternate peak demand:
See Design Note for considerations for
estimating peak demand.
Number of Times herd drinks/day:
This is typically 2 or 3, but for heavily subdivided, small pasture, this number may be as high as 5 or 6. Pasture size and shape factor in heavily.

## From the Missouri Livestock Watering Systems Handbook:

- Distance animals have to travel to get to water affects herd behavior as related to the social event of going to the water hole and the amount of water consumed.
- According to cow psychologists, cattle go to water less frequently and go as a herd or large grazing groups if water is farther than 800 feet from the pasture.
- If water is closer animals tend to go to water more often and as singles, pairs, or small groups (especially in flat or gently rolling terrain where they can keep sight of their buddies).
- The design delivery rate should be the maximum available or maximum required whichever is less. The tank size should be made bigger for low delivery systems. History has shown that oversized tanks work well with few problems.


## Cattle Watering Behavior Facts

- They drink 1 to 2 gallons per minute
- They drink for 2 to 3 minutes per drinking event
- So they can drink 6 gallons per drinking event per animal on 'high side'
- 2 to 5 drinking events per day - MU

Slide borrowed from "Solar Powered Water Systems for Grazing Operations" webinar presentation by Kevin Ogles, Grazing Lands Specialist, USDA-NRCS

Virginia Department of Conservation \& Recreation

## Fewer drinking events may be expected in:

$\longrightarrow$ Large pastures (Distance to Troughs)


Virginla Department of Conservation \& Recreation

## Fewer drinking events may be expected in:

Large pastures (Distance to Troughs)
Odd-Shaped Pastures or Non-Centrally Located Troughs

## Fewer drinking events may be expected in:

Large pastures (Distance to Troughs)
Odd-Shaped Pastures or Non-Centrally Located Troughs
Pastures where the water source and shade are separated***
***Note that this is a good conservation planning technique to encourage full utilization of the pasture; it just means that you can expect cattle to need fewer, longer-duration drinking events (thus a higher peak demand) when designing the system.


Example: Shade and trough are close together, which may result in a lower peak demand (because livestock will come to trough more frequently and less likely to come as a herd), but also poor pasture utilization in the summer.


## Fewer drinking events



- Longer Duration events
- Higher Peak Demand
- More water consumed per event
b) Daily Peak Water Demand

Number of times herd drinks/day
Time desired to water herd:
Average peak demand:
Alternate peak demand:
See Design Note for considerations for
estimating peak demand.
Time desired to water herd:
Typical values are 30 to 60 minutes but is highly subjective.

Time is valuable when cattle cannot graze because they are waiting for water.
b) Daily Peak Water Demand

Number of times herd drinks/day
Time desired to water herd:
Average peak demand:
Alternate peak demand:


See Design Note for considerations for estimating peak demand.
Alternate peak demand:
This is where the planner can use their field experience to enter a peak demand that they think is reasonable.

## Alternate Peak Demand

- One common "Rule of Thumb" is to design to supply 2 gallons per minute (gpm) per head (for cattle) that can drink at one time
(Missouri University Extension, Pumps and Watering Systems for Managed Beef Grazing).
- For example:

6 -hole trough: 6 holes $\times 1$ cow per hole $\times 2 \mathrm{gpm}$ per cow $=12 \mathrm{gpm}$ 4 -hole trough: 4 holes $\times 1$ cow per hole $\times 2 \mathrm{gpm}$ per cow $=8 \mathrm{gpm}$ 2-hole trough: 2 holes $\times 1$ cow per hole $\times 2 \mathrm{gpm}$ per cow $=4 \mathrm{gpm}$

- This is based on the premise that one beef cow will only drink 2gpm, so there is no need to deliver more water than 8 gpm to a 4 -hole trough.


## Alternate Peak Demand

- If you calculate an "Average Peak Demand" of 20gpm but understand that only 8 gpm will be consumed from the trough, do not design the system with pumping rate of 20gpm (resulting in a bigger pump, larger pipeline, and more cycling of the pump if cows are really only drinking 8gpm).
- Concerned about the time it will take to water a herd with a 4 -hole trough at 8 gpm ? $\rightarrow$ Consider a 6 -hole trough at 12 gpm OR troughs with more storage (concrete or HETT with float valves) if the peak demand (gpm) cannot be met.
- Do not install a 6-hole trough simply for more "storage" than a 4-hole trough (6-hole troughs typically only store 15-30 more gallons than 4-hole troughs)



## Recommended Approach:

b) Daily Peak Water Demand Number of times herd drinks/day Time desired to water herd: Average peak demand: Alternate peak demand:


See Design Note for considerations for estimating peak demand.

- Calculate an "Average Peak Demand" using 30-60 minutes per event and 3 events.
- Compare this result to the "Alternate Peak Demand" using the "2gpm-per-hole" approach
- If the "Average Peak Demand" >> "Alternate Peak Demand," then:
- Work backwards to determine how long it will take to water the herd at the "Alternate Peak Demand"
- If the Alternate Peak Demand is too low, upgrade to a trough with more holes or a storage trough
- If the "Average Peak Demand" << "Alternate Peak Demand," then:
- Use the "Alternate Peak Demand" as the "Design Flow Rate"
- Consider a trough with fewer holes as the "least cost, technically feasible alternative"
- If the "Average Peak Demand" $\approx$ "Alternate Peak Demand, then: GREAT!
- In this way, the "Average Peak Demand" can be thought of as more of a planning tool and will rarely be used as the actual pumping rate.


## Summary: Alternate Peak Demand

- 8gpm for 4-hole troughs
- 4gpm for 2-hole troughs
- 12gpm for 6-hole troughs
- 5gpm for concrete or HET troughs
- Compare to "Average peak demand" to determine if trough size is appropriate


## In case you forget...

## Virginia Livestock Watering Systems - Pressure System Worksheet



## A Related Aside...

- Manufacturer's recommendations for the number of cattle served by frost-free troughs may be higher than reality in pastures
- Manufacturers' numbers appear to be based on feed lot/loafing lot scenarios (not pasture) where cattle do not come to drink as a herd
Manufacturer's Recommendations for \# Beef Cattle Served by Troughs:

| Trough Size | Ritchie | MiraFount |
| :--- | :--- | :--- |
| 1-hole | $30($ CT1-2000) | 70 (\#3345) |
| 2-hole | $100($ CT2-2000) | $150(\# 3390)$ |
| 4-hole | $200($ CT4-2000) | $200(\# 3354-$ S) |
| 6-hole | $300($ CT6 $)$ | $250(\# 3370-S)$ |

This information is provided for informational purposes ONLY and is not a recommendation of any product or manufacturer.

For example, if a 2-hole trough is installed to serve 100 cows, the last cows in line would have to wait through 49 other pairs of cows to drink. Each drinking event could take several hours.

Mrginia Department of Conservation \& Recreation

## Trough Size Selection Example


b) Daily Peak Water Demand Number of times herd drinks/day Time desired to water herd: Average peak demand: Alternate peak demand

- This is a large herd of 120 cow/calf pairs.
- If we plan for a 4-hole trough at 8gpm with 3 drinking events, how long will it take to water the herd?
$2400 \mathrm{gpd} / 3$ events $=800 \mathrm{gallons}$ per event $800 \mathrm{gallons} / 8 \mathrm{gpm}=100$ minutes $\rightarrow$ This is a long time!
- What if we planned to upgrade to a 6-hole trough with an "Alternate Peak Demand"/"Design Flow Rate" of 12gpm
$800 \mathrm{gallons} / 12 \mathrm{gpm}=67$ minutes --> This is reasonable.


## Water Budget

## Virginia Livestock Watering Systems - Pressure System Worksheet



## Design Parameters

Virginia Livestock Watering Systems - Pressure System Worksheet


## Design Flow Rate - Feasible?

- Don't fall into "trap" of contractors saying pumps only come in 5 gpm , 10 gpm , etc. so you can't plan for pumping rates of $8 \mathrm{gpm}, 12 \mathrm{gpm}$, etc.
- A pump's advertised flow rate is only the average of its advertised pumping range!

Virginia Department of Conservation \& Recreation

## Example Pump Curve ${ }_{5 \text { ©लि } \cdot 1 / 2 \cdot 1 / 2 \mathrm{HP}}$

- These 5gpm pumps of varying horsepower operate at pumping rates of 2gpm - 9gpm depending on the total head on the pump.
- Example: The pump for our system will have a "Total Head" of 200ft. Will any of these 5gpm pumps pump at 8 gpm ?
- YES: the $3 / 4 \mathrm{HP}$ pump will work

NOTE: This is beyond the scope of our engineering responsibilities. We rely on the plumber to size \& select the pumps.


## Multiple size troughs in system?

- Decide on one design flow rate (there will only be one pump for the system)


## Design Parameters

## Virginia Livestock Watering Systems - Pressure System Worksheet

## Maximum float valve pressure: depends on

 trough manufacturer (see following slide).- Recommended Approach: Use max. pressure for standard valve; if this pressure is
 exceeded in Static pressure checks (Section
ff couroe flow rate is ciose to or less than Feak Demand, conalder atorsge altemstives (see 2nd Tab)
if couroe dally yleid is leas than Daly Demand, conaider an albemate or supplemental water source. 5.b.), then specify that a high pressure valve (if available) or Pressure Reducing Valve must be used.


4) Pump and Pressure Tank Design
a) 3ummary of energy requirements for the watoring cyctem:
Elevation head:
Friction loss:
Mnimum foas valve pressure:
b) Preccure switoh settinge Baced on syctom Load: Low pressure swtch setting: High pressure swith setting: $\quad \square$ pal (Max. is usually 80 pal) If a high prezsure switch setting of 80 pal or more is required, conalder altemate design or

## Minimum float valve pressure: Typically use 10psi

 Add 10\% for slope and fiting: Total fricton lose:

Pipe pressure rating: $72 \%$ of rating (See VA CFS 515)

Compare with result in 8tep 5b.
total Dynamic Resd wil equal this number plas the "Lt' hesd required to ger the water from the source up to the datribution syetem. The flow rate and the Total Dynamic Head will be used to elze the pump for the project.

Minlimampomprigetamed
Minimum pressure tank volume of $\square$
gpm $x$ minute galons

This is the minimum drawdown volume required to alow the pump to run for at least one minute before shuting oft. A larper volume can be used.

b) Cheok ctatio preccure at lowect trough: Elevation of presaure swith: Elevation of loweat trough: Demerence: Add high pressure switch setting: Total pressure at lowest trough:

Orange cel: pressure exceeds max float valve preasure; red celt pipe pressure limit exceeded. Check troughs at higher eievations if preasure is exceaslve at loweat trough.
$\square$

## Common Float Valve Pressure Ranges

## Ritchie 3/4" Valve Series

Ritchie $3 / 4$ " valves come in four pressure ratings



| Part No | GPM | Pressure |
| :--- | :--- | :--- |
| $\# 336$ | 14 | Low $5-40 \mathrm{psi}$ |
| $\# 521$ | 12.5 | High $40-80 \mathrm{psi}$ |
| $\# 519$ | 6 | High $80-90 \mathrm{psi}$ |

= Typically included as the Standard Valve (Check with Supplier)

Notice that the highest pressure valves reduce the flow rate to below 8gpm. In high pressure situations, you may consider recommending a Pressure Reducing Valve instead of a high-pressure float valve so that the flow rate is not sacrificed.

This information is provided for informational purposes ONLY and is not a recommendation of any product or manufacturer.

## Design Parameters

## Virginia Livestock Watering Systems - Pressure System Worksheet



## The Pipe Information section of the worksheet will be used to:

-Determine the minimum diameter of the pipeline
-Determine the friction loss created in the pipeline, which will influence the energy requirements (and therefore the pressure switch settings and pump requirements)

| 4) Pump and Pressure Tank Design <br> a) Jummary of energy requiremente for the watering Etom: <br> 0) Dynamlo Head added to pump by the watering cyctem: <br> Dynamk head = higher swtth setting of $\square$ pal $x 2.31=$ $\square$ feet Total Dynamic Head will equal this number plus the 'Lut' Head required to get the water from the source up to the diatribution system. The flow rate and the Total Dynamic Head will be used to size the pump for the project. | b) Preccure Switoh settinge Baced on Syctom Losd: <br> Low prezaure swith setting: pal (Mrimum is 20 pal) High pressure swith setting: $\square$ pal (Max. is usually 80 pal.) If a high preszure switch setting of 80 pal or more is required, conalder atemate design or high pressure-rated tank. |  |  |
| :---: | :---: | :---: | :---: |
| 5) Static Pressure Checks | b) Cheok ctatlo preccure at lowect trough: <br> Elevation of pressure swith: <br> Elevation of loweat trough: <br> Diference: <br> Add high pressure swich setting: Total pressure at lowest trough: | feet <br> feet <br> feet OR | Orange cel: pressure exceeds max float valve pressure; red cell pipe preasure limit exceeded. Check troughs at higher eievations If pressure is exceastre at lowest trough. $\square$ |

## Design Parameters

Pipe Material: Most pressure systems will be installed with plastic (PE or PVC) pipeline to minimize cost.

- If you know plastic will be installed but unsure whether it will be PE or PVC, select PVC for calculations because it has a smaller actual inside diameter for each nominal diameter and will give conservative friction loss calculations.


Vrginia Department of Conservation \& Recreation

## Pipe pressure rating: See DN-614-B-2

Polyethylene (PE) Plastic Pipe

- 250 psi
- 200 psi
- 160 psi
- 125 psi

Most commonly used: 160psi+


- 80 psi


## Polyvinyl Chloride (PVC) Plastic Pipe

Water pressure ratings for Schedule 40 PVC Pipe (PVC1120, PVC1220, PVC2120) are:
***If unsure whether PE or PVC will be used, use the PE pressure rating value to be conservative

| Nominal <br> Diameter | Pressure Rating <br> at $73^{\circ} \mathrm{F}$ |
| :---: | :---: |
| $1^{\prime \prime}$ | 450 psi |
| $1-1 / 4^{\prime \prime}$ | 370 psi |
| $1-1 / 2^{\prime \prime}$ | 330 psi |
| $2^{\prime \prime}$ | 280 psi |

## Pipeline Sizes

- All pipeline does not have to be the same size in a system!
- Design the "least cost, technically feasible" alternative
- Keep the potential for future expansion in mind. If the producer has committed to address farther fields at a later time, go ahead and plan for this.
- Analyze total friction loss to trough(s) - if using two different pipeline sizes, calculate friction loss in both runs and add together.
- Use the run with highest friction loss on the final worksheet that you size the pump with
- Might not be the longest run (if one run has smaller pipe)!

Pipeline Size: Future Expansion?

## Design Parameters

## Virginia Livestock Watering Systems - Pressure System Worksheet



## The Vertical Pumping Distance section of the worksheet will be used to:

-Determine the elevation head that the pump will need to overcome


## Design Parameters

High point to pump "to": enter brief description of the high point in the system e.g. "Trough 3" or "High point in line between well and Trough 3"

Ground elev. of high point: enter elevation of high point as determined by accurate methods (USGS topo NOT accurate)

- High Point is not always a trough location; can be in the middle of a run of pipeline

Low point to pump "from": ground elevation at the pump location (NOT the low point in the system; we are only concerned with the actual low point in the system later in the worksheet during static pressure checks). e.g. "Well"
(Keep in mind that the end result of the worksheet will be the "Dynamic Head added to pump by the watering system." We are trying to figure out the additional requirements (determined by the pressure switch settings) that the pump will need to overcome once it has already brought the water to the ground elevation at the source.)


## Design Parameters

## Virginia Livestock Watering Systems - Pressure System Worksheet



## Design Parameters

## Virginia Livestock Watering Systems - Pressure System Worksheet



## 4) Pump and Pressure Tank Design

 a) Summary of energy requiremente for the watering cyetem:
b) Preccure swith 3ettingt Baced on syctom Lasd:

Low prezsure satch zetting High pressure swith setting: $\square$ pel (Mrimum lo 20 pal.)
if a high preszure satch setting of 30 pal or more ta required, conalder atemate design or
high pressure-rated tank.
d) Minimum Effeotive Drawdown for Preceure Tank:

Design pumping rate of
Minimum pumping time of
Minimum pressure tank volume of $\square$ galons

This is the minimum drawdown volume required to allow the pump to run for at least one minute before shuting oft. A laper volume can be used.
b) Cheok ctatio preccure at lowect trough: Elevation of presaure swith: Elevation of lowest trough: Dimerence:
Add high pressure swtch setting: Total pressure at lowest trough:

Orange cel: prezsure exceeds max float valve preasure; red celt pipe pressure limit exceeded. Check troughs at higher eievations if preasure is exceaslve at loweat trough.

## Example



Low point to pump "from": Well, 400'

High point to pump "to": Proposed Trough, 500'

## Example



Low point to pump "from": Well, 400'
High point to pump "to": Hill Crest, 600'

Vrginia Department of Conservation \& Recreation

## Example

Proposed Well
Elevation: 500'


Low point to pump "from": Well, 500'
High point to pump "to": Hill Crest, 600'

## 4) Pump and Pressure Tank Design

## Virginia Livestock Watering Systems - Pressure System Worksheet

1 A Assistance infomation
The boxes in Section (4) "Pump and Pressure
Tank Design" are mostly automatic
calculations based on your inputs from
above.

4) Pump and Pressure Tank Design

## b) Pipe inform

Pipe materis:
Plpe nominal 6
Plpe avg. Inne
Pipe cross-zed
Friction lose/1d
velicty check
If velocity is an
Pipe lengt 10
Add $10 \%$ for :
Totalty iton lo
Total ficton lo.
P) e pressure rating:
$2 \%$ of rating (See VA CeS 515)

## The only input option for the user is the "Other" box for the energy budget. Here is where you would enter if you had performed a separate analysis (e.g. for evaluating two separate pipeline diameters).


b) Preceure switoh settinge Baced on syctom Lasd:


If a high pressure switch setting of 30 pal or more is required, conalder atemate design or high pressure-rated tank.
d) Minimum Effeotive Drawdown for Prececure Tank:

Design pumping rate of Minimum pumping time of Minimum pressure tank volume of $\quad \begin{aligned} & \text { minute } \\ & \\ & \\ & \end{aligned}$

This is the minimum drawdown volume required to alow the pump to run for at least one minute before shuting oft. A larper volume can be used.

Elevalon of highest point: Low pressure swith setting statc pressure on swith -
$\square$
b) Cheok ctatio preccure at lowect trough: Elevation of pressure swith: Elevation of lowest trough: Demerence: Add high pressure swtch setting: Total pressure at lowest trough:

Orange cel: preseure exceeds max float valve preasure; red cell pipe pressure limit exceeded. Check troughs at higher eievations IT preasure is exceastive at lowest trough.

# 5) Static Pressure Checks 

## Virginia Livestock Watering Systems - Pressure System Worksheet



## Section (5) "Static Pressure Checks" will help check that there will not be excessive static pressure on: -the pressure switch, and -the float valves at the trough(s)


$\square$ p:

Compare with result in step 5b.

b) Preceure Switoh settinge Baced on Syctom Losd: Low pressure switch setting: High pressure swtch sewing.
If a high prezsure switch setting of 80 pal or more la required, conalder altemate dezign or high pressure-rated tank.
d) Minimum Effeotive Drawdown for Presceure Tank:

Design pumping rate of
Minimum pumping time of
Minimum pressure tank volume of $\square$ galions

This is the minimum drawdown volume required to alow the pump to run for at least one minute before shuting of: A larger volume can be used.

If atatic pressure on the switch exceeds low pressure switch setting (red cell), the pump will not tum back on after trough is initialy flied and then emptied.

b) Cheok ctatio preceure at lowect trough: Elevation of pressure swith: Elevation of lowest trough: Demerence: Add high pressure swtch setting: Total pressure at lowest trough:

Orange cel: pressure exceeds max float valve pressure; red cell pipe pressure limit exceeded. Check troughs at higher eievations if preasure is exceaslve at loweat trough.
$\square$

# 5) Static Pressure Checks 

## Virginia Livestock Watering Systems - Pressure System Worksheet



## "Elevation of highest point:"

- Enter the highest elevation to which water will "stack" in the system.
- This should be the same elevation entered in box 3)c) "High point to pump to".


Pipe pressure rating:
$72 \%$ of rating (See VA CFS 516) $\square$ pal Compare with resul in step 5b
4) Pump and Pressure Tank Design


## "Elevation of pressure switch:"

## Enter the elevation of the pressure switch.

d) Minimum Effeotive Drawdown for Prescure Tan
Dealgn pumping rate of

Minimum pumping time o
Minimum pressures a volume of
gpm $x$ -inute galons

This is the minimum drawdown volume required to alow the pump to run for at least one minute before shuting of: A laper volume can be used.
5) Static Pressure Checks a) atatio preceure at preceure cwitoh:

If atatic pressure on the switch exceeds low pressure swtch setting (red cell), the pump will not tum back on after trough is initialy fled and then emptied.


[^1] red cell pipe preasure limit exceeded. Check troughs at higher eievations IT pressure is excessive at lowest trough.
$\square$

# 5) Static Pressure Checks 

## Virginia Livestock Watering Systems - Pressure System Worksheet



Once the elevations are entered for the highest point and the pressure switch, the "Static pressure on switch" will be calculated.

- If the "Static pressure on switch" is greater than the low pressure pressure switch setting (the "cut-in" pressure), then the pressure switch will never activate the pump and the system will not work.
- If the worksheet has been completed correctly, this should never be an issue.

4) Pump and Pressure Iank Design a) Jummary of energy requirements for the watoring cystem: Elevation head:
Friction lose
Miner loat valve pressure: TOTAL REQUIREMENTS: 0) Dynamio Head added to pump by the watering cystem:
Dynamk head = higher zwte zetting of Dynamk head $=$ higher swtch setting of Total Dynamic Head will equal this number plus the 'Lut' Head required to ges the source up to the diatribution syatem. The flow rate and the Total Dynamic Head will be size the pump for the project.
b) Dally Poak Water Demsand Number of times herd drinkaldyy Time dealred to water herd: Average peak demand:
Azemate peak demand:
See Design Note for considerations for eatimating peak demand.
Source flow rate:
source daly yleid:gpm(see 2nd Tab) water source.

b) Cheok ctatio preccure at lowect trough: Elevation of pressure swith: Elevation of loweat trough: Demerence: Add high pressure switch setting: Total pressure at lowest trough:

Orange cel: preasure exceeds max float valve preasure; red cell pipe preasure limit exceeded. Check troughs at higher eievations if preasure is exceaslve at loweat trough.
$\square$

# 5) Static Pressure Checks 

## Virginia Livestock Watering Systems - Pressure System Worksheet



## "Elevation of lowest trough:" Enter the elevation of the lowest trough to check the static pressure on the trough's float valve.

- This is the lowest trough in the SYSTEM
- If the pressure is excessive at the lowest trough, then check the next lowest trough to see if it has excessive static pressure, too.
- Continue checking trough elevations until static pressure is no longer an issue.
- For the troughs with high pressure:
- Install a high pressure valve (typically not rated higher than 90 or 100psi)
- Install a pressure reducing valve in the supply line
- Install a hybrid system (pressure and gravity)
- using a reservoir on a float valve (see DN-614, Example 5 "Use of a Reservoir for Pressure Relief")
- using a storage trough on a float with a supply line to the lower trough



## Pressure Reducing Valves

- Can be installed to reduce the pressure in the pipeline
- Will reduce the pressure in the line at the elevation where it is installed
- Pressure will continue to increase downstream of the reducer if the rest of the pipeline is downhill
- Can be installed on spur line to reduce pressure at individual
 troughs or on trunk line to reduce pressure on entire system downstream

Mrginia Department of Conservation \& Recreation

## Pressure Reducer Example

Assume a 20/40 pressure switch located at the well.


Mrginia Department of Conservation \& Recreation

## Pressure Reducer Example

Assume a 20/40 pressure switch located at the well, and a pressure reducing valve (PR1) at elevation 850 (just upstream of Trough 2) set to 50psi.


## rressure Reducer Example

Assume a 20/40 pressure switch located at the well, pressure reducing valve (PR1) at elevation 850 (just upstream of Trough 2) set to 50 psi, and a pressure reducing valve (PR2) at elevation 675 (just upstream of Trough 2) set to 50psi.


## pressure Reducer Example

What if trough 3 were higher than Trough 2?

| Feature | Elev. <br> (ft.) | Elevatio <br> n Diff. <br> from <br> Well (ft.) | Pressure Diff. from Well (psi) | Elev. Diff. from PR1 (ft.) | Pressure Diff. from PR1 (psi) | Elev. Diff. from PR2 <br> (ft.) | Pressure Diff. from PR2 (psi) | Static Pressure at Trough |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Well | 1000 | 0 | 0 | - | - | - | - | 40psi |
| Trough 1 | 925 | 75 | +32.5 | - | - | - | - | 72.5psi |
| Trough 2 | 850 | T50 | +649 | 0 | 0 | - | - | 50 psi |
| Trough 3 | 950 | -50 | 724.6 | +100 | -43.3 | - | 6.7psi |  |
| would not be enough pressure at Trough 3 if PR1 is installed in the main trunk A solution would be to install the pressure reducer on the spur line to Trough 2 at only the pressure at Trough 2 is affected. Pressure at trough 3 would still be mined by its elevation difference from the well. |  |  |  |  |  |  |  |  |



## Common Misconceptions: \#1

 High static pressure issues can be solved by installing a smaller pipeline diameter.- FALSE: Static pressure is only dependent on the height of the column of water, not its diameter.
- Actually, a smaller pipeline diameter entered into the worksheet can increase the friction loss, and may increase the pressure switch settings (resulting in higher static pressure) if you are not paying attention!


## Common Misconceptions: \#2

Stored water in a reservoir somehow adds extra pressure to the system (more than just the height of the water would add).

- FALSE: Static pressure is only dependent on the height of the column of water, not its diameter.

Vrginla Department of Conservation \& Recreation

## Example: Empty Reservoir

Elev.: 100'

Elev.: 94

Pressure at Trough: 24' / 2.31psi/ft. = 10.4psi

Elev.: 70

## Example: Full Reservoir

Elev.: 100'

Pressure at Trough: 30' $/ 2.31 \mathrm{psi} / \mathrm{ft}$. $=13 \mathrm{psi}$

The extra pressure at the trough when the reservoir is full only depends on the height of the water in the reservoir and not the volume.

## Common Misconceptions: \#3

Excessive static pressure can be solved by balancing it with high friction loss.

- FALSE: Static pressure refers to the pressure in the system when water is NOT moving. Friction loss only occurs when the water is moving.


## Common Misconceptions: \#4

When "Tee"-ing off of an existing pipeline in an existing system, it does not make sense to use a larger diameter pipeline than what is already installed.

- FALSE: Friction loss is cumulative. Using larger diameter pipeline for the new pipeline will minimize friction loss. Always perform calculations for the existing AND new pipeline to the watering point and add them together.


## Common Misconceptions: \#5

Pipeline size does not matter because the orifice of the float valve at the trough is very small and is the "bottleneck" in the system.

- FALSE: As the following slide shows, the orifice of most float valves has a capacity higher than most typical design flow rates.

Vrginia Department of Conservation \& Recreation

## Common Float Valve Pressure Ranges

## Ritchie 3/4" Valve Series

Ritchie $3 / 4$ " valves come in four pressure ratings

• $\quad$| White -33 GPM, Low $(5-40 \mathrm{psi})$ |
| :---: |
| Red -20 GPM, Moderate $(40-60 \mathrm{psi})$ |
| Green -16.5 GPM . Hiah ( $60-80 \mathrm{psit}$ |

Blue -5 GPM , Very High ( $80-100 \mathrm{psi}$ )

"Originators of insulated poly waterers"

| Part No | GPM | Pressure |
| :--- | :--- | :--- |
| $\# 336$ | 14 | Low $5-40 \mathrm{psi}$ |
| $\# 521$ | 12.5 | High $40-80 \mathrm{psi}$ |
| $\# 519$ | 6 | High $80-90 \mathrm{psi}$ |

= Typically included as the Standard Valve (Check with Supplier)

Notice that the highest pressure valves reduce the flow rate to below 8gpm. In high pressure situations, you may consider recommending a pressure reducing valve instead of a high-pressure valve so that the flow rate is not sacrificed.

This information is provided for informational purposes ONLY and is not a recommendation of any product or manufacturer.

## You MIGHT have done something wrong IF:

- The well/pressure switch is the highest point in the system and the worksheet calls for a pressure switch larger than 20/40
- The "static pressure on switch" box in Section 5.a. turns red
- The static pressure on the switch should never be higher than the low switch setting if all inputs on the worksheet are correct.


## Considerations for Evaluating an Existing Pumping Plant



## Information to Gather: Existing Systems

- Age and condition of pumping plant
- Existing Pumping Rate
- Existing Pressure Switch Settings
- Length and diameter of existing pipeline
- Evaluate for Friction Loss
- Existing Elevations
- Existing elevations need to be considered for the "High point to pump "to"' and "Elevation of lowest trough"


## Age and Condition of Pumping Plant

- Goal: Determine if the existing pumping plant will last for the duration of the practice lifespan
- How old is the existing pump?
- Has the landowner ever experienced any problems with the pump?
- Was the existing pumping plant installed as part of a conservation program? If so, is it still under contract lifespan?


## Existing Pumping Rate <br> - Why does the existing pumping rate matter?

1. Is the pumping rate sufficient to supply the livestock?
2. Should be used to size the pipeline if the existing pump will be used

- How to determine:
- If the well was installed recently, the pumping rate may be listed on the "Water Well Completion Report" at the Health Dept.
- Look for the pump capacity (different from well yield)
- Manual Pumping Rate Test:
- Find a hydrant (something with a full flow orifice) near the pumping plant
- Open the hydrant up and wait for the pressure tank to empty
- Once the tank is empty and the switch engages the pump, begin collecting the water in a container of known volume
- Time how long it takes to fill the container
- Divide the gallons filled by the time it took (in minutes) to come up with the pumping rate in GPM
- Where to input into worksheet:
- "Source Flow Rate" $\rightarrow$ "Design Flow Rate"
- Also document well yield on worksheet


## Pressure Switch Settings

1) Complete the "Pressure System Worksheet" using the existing pumping rate

2) What pressure switch requirements are generated by the worksheet?
3) If the worksheet calls for pressure switch settings that are higher than the existing settings, the total head on the pump will increase, and the contractor/plumber will need to evaluate the impact on the pump

- This process is for planning purposes: Do we need to plan for a new pump?
- Sizing pumps is beyond the scope of our responsibility
- Leave it up to the professionals!


## Pressure Switch Settings Cont'd

- Increasing the head on the pump will reduce its pumping rate
- If you don't have info on the pump (model \#), you won't know how the pumping rate will be affected

Existing System: at 290ft. of head, 5 gpm pumping rate

Ex. Pump, New Switch: Increase pressure switch from 20/40 to 40/60, a net increase of 20psi.
20 psi * $2.31 \mathrm{ft} / \mathrm{psi}=46.2 \mathrm{ft} \approx 46 \mathrm{ft}$ of head New total head on pump: 290ft. $+46.2 \mathrm{ft} .=336 \mathrm{ft}$.
 New Pumping rate: $3^{1 / 1 / 3} \mathrm{gpm}$

## Existing Pump Example

- The following example will show the importance of using the existing pumping rate if you will be using an existing pump.
- The first worksheet will be run as if the planner has assumed an "Alternate Peak Demand" of 8gpm.
- The second worksheet will be run with the actual pumping rate of 15 gpm .
- A discussion will follow.

If an＂alternate peak demand＂of 8 gpm is used for 4－hole troughs， then the friction loss is only 5.2 psi energy requirements of the system are 29．0psi，resulting in pressure switch settings of $30 / 50$ ．

| 1）Assistance Information |  | Project Notes： | Worksheet 1：Assuming a design flow rate of 8gpm． |
| :---: | :---: | :---: | :---: |
| Customer： | Example |  |  |
| County： | Example | Print Page |  |
| Date： <br> Assisted By： | Raleigh Coleman | Clear Data |  |

2）Water Budget

| a）Total Daily Water Demand |
| :--- |
| Type of livestook： <br> Number of Animals： <br> N／ <br> Water demandlanimallday： |
| Total Daily Demand： |
|  |
| See Design Note for watering recommendations for <br> various tupes of livestock． | See Design Note for watering recommendations for various types of livestock．

## 3）Design Parameters

| a）Trough Information |
| :--- |
| Trough type（s）： |


| Design flow rate： | Alternate Pesk Demond | 8.0 |
| :--- | :--- | :--- |
| gmm |  |  | Select flow rate to troughs as guided by Step 2 and Design Note．Typical design flow rates are： 8 gpm for Frost－free troughs； 5 gpm for storage troughs． Maximum float valve pressure： 80 psi Typical values range from 50－140 psi．Check manufacturer＇s recommendations．

Minimum float valve pressure：$\quad \square$
Varies depending on type of float．Use manufacturer＇s Varies depending on type of float．Use manufacturer＇s recommended minimum．Typical value is 10 psi ．
b）Daily Peak Hater Demand Number of times herd drinksiday Time desired to $w$ ater herd： Average peak demand： Alternate peak demand See Design Note for considerations $\quad 8$ gpm estimating peak demand．


\section*{c）Evaluate Source

## 隹

## 隹

Source daju rate： $\square$
15 gpm
Source daily yield：
If source flow rate is close to or less than 21600 gpd
If source flow rate is close to or less than Peak Demand，consider storage alternatives（see 2nd Tab）．
If source daily yield is less than Daily Demand，consider an altemate or supplemental water source．

## b）Pipe Information

c）Vertical Pumping Distance
Pipe material：
Pipe nominal diameter：
Pipe aug．inner diameter：
Pipe cross－sectional area： Friction lossi100 ft
Velocity check（ $<5 \mathrm{fps}$ ）：

| Plaztic：PE SIDR－PR |  |
| :---: | :---: |
| a： | 11／4＂［－］ |
|  | 1.38 |
|  | 0.0104 |
|  | 1.1 |
|  | 1.7 |


| High point to pump＂to＂： | Trough 1 |
| :---: | :---: |
| Ground elev．of high point： | 460 |

Low point to pump＂from＂： | Ground elev．of low point： | Well |
| :--- | :--- |
| Gee |  |

Elevation difference

## OR



Pipe length to farthest watering poir 1000 feet
Add $10 \%$ for slope and fittings：
Total friction loss：
Total friction loss：


Pipe pressure rating：$\quad 160$ psi
72\％of rating（See VA CPS 516）：$\quad 115$ psi Compare with result in Step 5b．

4）Pump and Pressure Tank Design
a）Summary of energy requirements for the watering system： $\square$
Elevation head：
Friction loss：
Minimum float valve pressure：
Dther：
TOTAL REQUIREMENTS：

| 13.9 | $p$ |
| ---: | ---: |
| 5.2 | $p$ |
| 10 | $p$ |
| 29.0 | $p$ | $\begin{array}{ll}\text { psi } & \text { ロR } \\ \text { psi } & \square R \\ \text { psi } & \square R \\ \text { psi } & \square R \\ \text { psi } & \square R\end{array}$ TOTAL REQUIREMENTS： by the waterin bye vaten ring system $\qquad$ Dynamic head＝higher switch setting of plus the＇Lift＇Head required to get the Total Dynamic Head will equal this number．The flow rate and the Total Dunamio Head will be used to size the pump for the project

b）Pressure Switch Settings Based on Sustem Load

| Low pressure switch setting： | 30 psi （Minimum is 20 psi．） |
| :---: | :---: |
| High pressure switch setting： | 50 psi （Max．is usually 80 psi ．） |
| If a high pressure switch setting design or high pressure－rated t | of 80 psi or more is required，consider alternate ank． |

High pressure switch setting： $\square$ 0 psi ． design or high pressure－rated tank
d）Minimum Effective Drawdown for Pressure Tank： Design pumping rate of
 8.0 gpm g Minimum pumping time of Minimum pressure tank volume $\quad 8.0$ gallons

This is the minimum drawdown volume required to allow the pump to run for at least one minute before shutting off．A larger volume can be used．


## 5）Static Pressure Checks

Elevation of highest point： Low pressure switch setting

Static pressure on switch $=$
b）Check static pressure at lowest trough Elevation of pressure switch：
 Elevation of lowest trough： Difference：
Add high pressure switch setting Total pressure at lowest trough：
pressure；red cell：pipe pressure limit exceeded． Cheok troughs at higher elevations if pressure is excessive at lowest trough．
$\square$


Virginia Livestock Watering Systems - Pressure S)

| 1) Assistance Information |  | Project Notes: | Worksheet 2: Using the existing pumping rate of 20 gpm . |
| :---: | :---: | :---: | :---: |
| Customer: | Example | Pri |  |
| County: | Example | Print Page |  |
| Date: <br> Assisted By: | Raleigh Coleman | Clear Data |  |

If the actual pumping rate of 15 gpm used, then the friction loss jumps up to 16.6 psi and the energy requirements of the system are 40.5 psi resulting in pressure switch settings of $40 / 60$.

## 2) Water Budget

a) Total Daily Water Demand

| Type of livestock: | beef |
| :--- | ---: |
| Number of Animals: | 50 |
| Water demandlanimaliday: | 20 |
|  | gpd |
| Total Daily Demand: | 1000 | Water demandlanimalliday: otal Daily Demand: See Design Note for wate

various types of livestock.

## 3) Design Parameters

| Trough type(s): | 4-Hole Frost-Free |  |  |
| :---: | :---: | :---: | :---: |
| Design flow rate: | Source Flow Riste |  | 15.0 |
| Select flow rate to troughs as guided by Step 2 and Design Note. Typical design flow rates are: 8 gpm for frost-free troughs; 5 gpm for storage troughs. Maximum float valve pressure: |  |  |  |
|  |  |  |  |
| Typical values range from $50-140 \mathrm{psi}$. Check manufacturer's recommendations. |  |  |  |
| Minimum float va Varies depending recommended m | pressure: ntype of float. L num. Typical va | $\begin{aligned} & \text { e manufa } \\ & \text { eis } 10 \text { psi. } \end{aligned}$ | $\begin{array}{r} 10 \\ \hline \end{array}$ |

b) Daily Peak Water Demand Number of times herd drinksiday Time desired to water herd: Average peak demand: Alternate peak demand: Alternate peak demand: $\quad 5.6 \mathrm{gpm}$ See Design Note for considerations for estimatingpeak demand.


Source daily yield: 21600 gpd
If source flow rate is close to or less than Peak Demand, consider storage alternatives (see 2nd Tab).
If source daily yield is less than Daily Demand, consider an alternate or supplemental water source.
b) Pipe Information

Pipe material:
Pipe nominal diameter:
Pipe aug. inner diameter:
Pipe cross-sectional area:
Friction lossi 1100 ft
Velocity check ( $<5 \mathrm{fps}$ ):


If velocity is greater than 5 fps , consider a larger diameter pipe.

| Pipe length to farthest watering, poir | 1000 | feet |  |
| :--- | :--- | :--- | :--- |
| Add $10 \%$ for slope and fittings: | 1100 | feet |  |
|  |  |  |  |


| Add $10 \%$ for slope and fittings: | 1100 | reet |
| :--- | ---: | ---: |
|  | Total friction loss: | 38 |
|  | ft OR |  |

Total Iriction loss:
Pipe pressure rating: $72 \%$ of rating (See VA CPS 516):

| c) Vertical Pumping Distance |  |
| :---: | :---: |
| High point to pump "to": | Trough 1 |
| Ground elev. of high point: | 460 feet |
| Low point to pump "from": | Well |
| Ground elev. of low point: | 428 feet |
| Elevation difference: | 32 feet |
| OR | 13.9 psi |

4) Pump and Pressure Tank Design
a) Summary of energy requirements for the watering system:

| Elevation head: | 13.9 | psi | OR | 32 |
| :---: | :---: | :---: | :---: | :---: |
| Friction loss: | 16.6 | psi | OR | 38 |
| Minimum float valve pressure: | 10 | psi | OR | 23 |
| Other: |  | psi | OR |  |
| TOTAL REQUIREMENTS: | 40.5 | psi | OR | 93 |

Dther:
TOTAL REQUIREMENTS:
by the wat 40.5 psi DR c) Dynamic Head added to pump $\qquad$ 60 psi $: 2.31=$ $\qquad$ Dynamic head = higher switch setting of Total Dynamic Head will equal this number plus the 'Lift' Head required to get the water from the source up to the distribution system. The flow rate and the Total Dynamic Head will be used to size the pump for the project.
b) Pressure Switch Settings Based on System Load:

Low pressure switch setting: $\quad 40$ psi (Minimum is 20 psi .) High pressure switch setting:
high pressure switch setting: $\quad 60$ psi (Max. is usually 80 psi.)
If a high pressure switch setting of 80 psi or more is required, consider alternate
design or high pressure-rated tank.
d) Minimum Effective Dravdown for Pressure Tank: Design pumping rate of


This is the minimum draw down volume required to allow the pump to run for at least one minute before shutting off. A larger volume can be used.
5) Static Pressure Checks

| it Elevation of highest point: Elevation of pressure switch: Low pressure switch setting= | 480.0 |
| :---: | :---: |
|  | 428 |
|  | 40 |
| Static pressure on switch $=$ | 22.5 |

b) Check static pressure at lowest trough


OR

Orange cell: pressure exceeds max float valve Orange cell. pressure exceeds man loat valve pressure; red cell: pipe pressure limit esceeded.
Check troughs at higher elevations if pressure is Check troughs at higher ele
excessive at lowest trough.

| -22.5 | psi |
| ---: | ---: |
| 60 | psi |
| 37.5 | psi |

## Discussion

- What if the system is designed based on an arbitrary pumping rate of 8 gpm when the pump is actually pumping at 15 gpm ?
- The energy requirement to deliver the water to the trough is actually 40.5 psi
- It only takes 30psi for water to enter the pressure tank (a 30/50 pressure switch was used based on the 8gpm flow rate)
- When the pump kicks on, the pressure tank is the "path of least resistance" and will begin to fill first
- Trough will not fill until sufficient pressure is achieved in the tank
$-\quad \rightarrow$ The trough will be "short-circuited" by the tank
- The system may still work, but it will be inefficient and livestock will be waiting for water every time the pressure tank empties
- Note: This example is exaggerated to illustrate a concept. A 15gpm pumping rate will be unlikely for most standard well


## ?

Just remember: use the existing pumping rate as the "design flow rate" if using an existing pumping plant.
(Or, if the existing pump rate is inappropriate, plan for a new pump.)

## Important Point for Existing Pumps:

- Don't confuse flow rate and pressure
- A high flow rate does NOT necessarily mean there is too much pressure
- Pressure is governed by the pressure switch
- A high flow rate can actually mean there will not be ENOUGH pressure to overcome the higher friction loss associated with higher flow rates


## User Beware: Things that the worksheet will not catch

- Static pressure issues in pipeline if there is a low point in pipeline below the lowest trough
- Check static pressure (can enter into "Elevation of lowest trough" to check)
- Compare against 72\% of pressure rating
- If the well is higher than the pressure switch: dynamic head added to pump will be less than what the worksheet calculates
- If the well is lower than the pressure switch: dyanamic head added to pump will be higher than what the worksheet calculates


## Worksheet Completion

- You might do multiple analyses for various reasons, but only give ONE worksheet to the contractor to show the total dynamic head for the entire system, the design flow rate, pressure switch settings.
- Reference the worksheet in the design so that the contractor knows to look for it.
- Keep the other worksheet(s) in your file to document your calculations.


## Construction Changes

- If the system needs to be changed during construction, re-run the worksheet to see if anything is affected
- Pumps pumping higher GPM than Design Flow Rate can be problematic!
- If the producer uses a pressure switch that is higher than what the worksheet called for, add the difference between the two switches to the static pressure check on the worksheet to see if it causes any static pressure issues


Worksheet calls for a 20/40 pressure switch. Contractor installed 40/60 pressure switch. There is more than enough pressure to make the system work, but will it create static pressure issues?

40/60-20/40 = 20psi increase
72.5 psi (at lowest trough) $+20 \mathrm{psi}=92.5 \mathrm{psi**}$ This is too high for standard valves!

## A quick note on as-builts...

- The more detailed your as-builts are, the more useful they will be in the future if needed to tie back into the system
- Did the pipeline route change?
- Pipeline lengths
- Pipeline type (ASTM, diameter, pressure rating)
- Pumping Plant Info (Pump Model Number, Pumping Rate, Pressure Switch Settings, Size of Tank, etc.)
- Etc...


## NRCS Construction Quality Assurance Plans

## Items to be inspected and verified:

- Verify that the landowner has obtained all of the required permits prior to construction.
- Verify that MISS UTILITY is contacted prior to construction for underground utility location.
- Photograph the site, before, during and after construction.
- A pre-construction meeting needs to take place so that all parties involved understand their roles and responsibilities.
- Verify the watering system components were installed in the designed locations.
- Watering Troughs \& Reservoirs
- Document the type and number of watering troughs and reservoirs that were installed.
- Verify that the watering troughs and reservoirs have been installed per the manufacturer's recommendations and in accordance with the design.
- For frost-free troughs, verify there is a minimum of 18 " of concrete from the edge of the trough in each direction.
- Verify the heavy use area surrounding the trough extends at least $8^{\prime}$ from the edge of the trough in each direction.
- Verify the thickness(es) and the material(s) used for the heavy use area protection are as designed.
- Verify that the correct type of geotextile was used under the heavy use area protection


## Pipelines

- Verify the type, diameter, length and depth of pipe installed are as designed.
- Verify the installation procedures, including assembly of joints and fittings, are correct for the type of pipeline, as designed.
- For pressure systems, verify that the pipe was pressure tested prior to backfilling.
- Verify that the pipeline trench has been backfilled and properly compacted.
- Verify that a valve has been installed in the lateral(s) to regulate flow to the trough(s) and a means of draining the pipeline between the valve and trough has been installed
- Water Wells
- Obtain a copy of the Commonwealth of Virginia Water Well Completion Report Certificate of Completion/County Permit (DEQ form) or the Virginia Department of Health Uniform Water Well Completion Report.
- Obtain the estimated yield of the well and check against the assumed yield used in designing the system.
- Obtain information (horsepower rating, performance curve, etc.) about the pump used.


## - Spring Developments

- Verify that the spring development is installed as designed, if applicable.
- Obtain the estimated yield of the spring and check against the assumed yield used in designing the system.
- Verify that the practices installed are functioning as designed.
- Ensure that all disturbed areas have been re-vegetated and/or protected from erosion.
- Verify that any design changes have been documented and approved by someone with the appropriate EJAA.
- Verify that the appropriate As-Built documentation has been completed
- Site specific items to be inspected and verified:


## Resources for Further Study

- NRCS Virginia Engineering Design Note 614 (DN-614)
- NRCS Engineering Field Handbook, Chapter 3: Hydraulics


## Special Thanks...

- Glenn Chappell, James River SWCD for securing the location
- Pat Mcllvaine, Loudon SWCD, Stone
- Keith Burgess, Monacan SWCD, supplies
- Dana Young, NRCS, supplies
- Sharyl Walker, NRCS, supplies


## Questions?

## Contact Information

## DCR-DSWC Engineering Staff:

Amanda Pennington, P.E.<br>District Engineering Services Manager 804-786-0113<br>Amanda.pennington@dcr.virginia.gov

Emily Nelson<br>Ag BMP Technician<br>804-219-6098<br>Emily.nelson@dcr.virginia.gov

Raleigh Coleman<br>Ag BMP Engineering Specialist<br>540-270-0039<br>Raleigh.coleman@dcr.virginia.gov

Vrginla Department of Conseration \& Recceation

## Discussion of 3 Common Systems

## -Conventional <br> -Remote Pressure Tank <br> -Reservoir with Pump on Timer

## Part II: Design Examples

Part I presented an overview of concepts and the general process for planning, designing, installing, and maintaining a livestock watering system. Part II presents eight examples to illustrate different design strategies. Calculations and discussion are based on the Virginia Livestock Watering Systems calculation worksheets. The spreadsheet tool addresses pressure systems, gravity systems, and hybrid systems and provides a means for performing design calculations as well as for documenting key information.

## 1. Conventional Pressure System

## 1. Pressure Systems

A typical pressure system scenario involves using a pump to move water from a source to one or more troughs using utility-supplied electricity to power the pump motor. A pressure tank is used to protect the pump from rapid on and off cycling. The design calculations are aimed at sizing the pipeline, determining the energy required by the distribution system (to aid pump selection), sizing the pressure tank, and checking that system pressures are within mechanical and material limits. Usually the pressure tank and pressure switch are located near the pump. The calculations presented in this section cover the typical case. However, there may be good reason to place the pressure tank (and possibly the pressure switch) at a location remote from the pump - these situations are addressed with examples in Part II. The basic design steps are the same, however.

## - Typically the least-cost alternative for systems with wells with yields that can meet the peak demand

Vrginia Department of Conservation \& Recreation

## 2. Remote Pressure Tank

DN-614-II-3

## Example 2 - Pressure System with a Remote Pressure Tank

In Example 1, the pump, pressure tank, and pressure switch are located close to each other. In some cases, it is advantageous to locate the pressure tank at some distance from the pump. Reasons for using a remote pressure tank include:

- Reducing the pressure, size, and expense of the pressure tank by placing it at an elevation between the pump and the highest trough.
- Convenience of location (for example, using an existing shelter to house the pressure tank). See Example 3 for such a scenario.

In such cases, consideration should also be given to the location of the pressure switch.

1) If the pressure switch is located with the pressure tank, the wire to the pump will have to be placed in the pipeline ditch where it is subject to damage by lightning or burrowing animals. As distance from the pump increases, the heavier the wire gauge required and the greater the wire cost. (See Appendix A-6.)
2) If the pressure switch is located near the pump and away from the pressure tank, there is greater fluctuation in the pressure sensed at the switch due to the increased distance from the tank. To reduce "flutter" (rapid switching on and off), and thus to protect the pump from premature wear, a snubber (small orifice) can be installed. See Appendix B-3 for a pressure switch with a snubber detail drawing.

Virginia Department of Conservation \& Recreation

## 3. Reservoir with Pump on Timer

## Hybrid or Pressure-Energy Systems:

A hybrid system uses pressure energy from a pump to transport water to a reservoir and then uses the reservoir's potential energy to deliver the water to the troughs which are topographically downhill. The pump can be placed on a timer to ensure that the pump is on for a given amount of time to fill the reservoir. This approach replaces the pressure tank and pressure switch for preventing pump burn-out due to short-cycle pumping. Reservoirs can also serve as pressure reducers in cases where troughs are much lower in elevation than the source. Part II discusses a variety of energy strategies.

## Example 5 - Use of a Reservoir for Pressure Relief

Example 6 - Reservoir System on Timer
d) If Pumping to a Reservoir, compute the following to determine the energy that needs to be supplied by the pump to get the water to the reservoir:
i. Record the desired pumping rate (gpm) to the reservoir. This value is not the same as the design flow rate to the troughs. Choose a rate that will fill the reservoir in a timely manner without exceeding the flow rate of the source. Choose a flow rate that will allow the selected pump to run long enough to avoid premature wear from short cycling. A run time of 3-6 hours, two times a day is typical. A timer controls when the pump is on. The timer in the photograph is set to run the pump from 3:00 AM-4:30 AM and again from 3:00 PM-4:30 PM.


Pump timer. Photograph courtesy of Mountain Castles SWCD.

The pumping rate and corresponding head must also be compatible with the pumps available from the supplier. Once the pump has been selected, re-work the calculations below using the flow rate from the pump's performance curve.
ii. Determine the pumping duration required to meet the daily water demand from Step 2a:

$$
\text { Pumping duration }(\text { min. })=\frac{\text { Daily demand }(g p d)}{\text { Desired pumping rate }(g p m)}
$$

Vrginia Department of Conservation \& Recreation

- Float-valve systems: Troughs are tee-ed off from a main line with flow to each trough controlled by a float valve. Flow to a trough shuts off when the trough is filled, and thus, static pressure can be of concern if there is sufficient head.
- Cascading systems. Troughs are connected in series by way of their-overffow pipes. There are no float valves - instead, water overtlows frone trough to the next lower trough. Overflow from the last trough is generally directed back to the natural drainage system.


Figure I-5. Float Valve vs. Cascading Trough Arrangements.

Virginia Department of Conservation \& Recreation


Figure II-15. Layout for Example 6 - Reservoir System on Timer


Figure II-16. Profile for Example 6.


[^0]:    Pressure System Public Water Connection Gravity System \＆

[^1]:    Orange cel: pressure exceeds max float valve preasure;

