WHAT ARE NATIVES?
Native species evolved within specific regions and dispersed throughout their range without known human involvement. They form the primary component of the living landscape and provide food and shelter for native animal species. Native plants co-evolved with native animals over many thousands to millions of years and have formed complex and interdependent relationships. Our native fauna depend on native flora to provide food and cover. Many animals require specific plants for their survival.

BENEFITS OF NATIVE PLANTS
Using native species in landscaping reduces the expense of maintaining cultivated landscapes and minimizes the likelihood of introducing new invasive species. It may provide a few unexpected benefits as well.

Native plants often require less water, fertilizer and pesticides, thus affecting fewer chemicals to the landscape and maintaining water quality in nearby rivers and streams. Fewer inputs mean time and money saved for the gardener.

Native plants increase the presence of desirable wildlife, such as birds and butterflies, and provide sanctuaries for these animals as they journey between summer and winter habitats. The natural habitat you create with native plants can become an outdoor classroom for children, or a place for you to find peace and quiet after a busy day.

Native plants evoke a strong sense of place and regional character. For example, live oak and magnolia trees are strongly associated with the Deep South. Redwood trees characterize the Pacific Northwest. Saguaro cacti call to mind the deserts of the Southwest.

BUYING AND GROWING NATIVE PLANTS
More gardeners today are discovering the benefits of native plants and requesting them at their local garden centers. Because of this increased demand, retailers are offering an ever-widening selection of vigorous, nursery-propagated natives.

Once you’ve found a good vendor for native plants, the next step is choosing appropriate plants for a project. One of the greatest benefits of designing with native plants is their adaptation to local conditions. However, it is important to select plants with growth requirements that best match conditions in the area to be planted.

If you’re planning a project using native plant species, use the list in this brochure to learn which plants grow in your region of Virginia. Next, study the minimum light and moisture requirements for each species, noting that some plants grow well under a variety of conditions. Many of the recommended species are well-suited to more than one of these categories.

For more information, refer to field guides and publications on local natural history for color, shape, height, bloom times and specific wildlife value of the plants that grow in your region. Visit a nearby park, natural area preserve, forest or wildlife management area to learn about common plant associations, spatial groupings and habitat conditions.

For specific recommendations and advice about project design, consult a landscape or garden design specialist with experience in native plants.

WHAT ARE NON-NATIVE PLANTS?
Sometimes referred to as “exotic,” “alien,” or “non-indigenous,” non-native plants are species introduced, intentionally or accidentally, into a new region by humans. Over time, many plants and animals have expanded their ranges slowly and without human assistance. As people began cultivating plants, they brought beneficial and favored species along when they moved into new regions or traded with people in distant lands. Humans thus became a new pathway, enabling many species to move into new locations.

WHAT ARE INVASIVE PLANTS?
Invasive plants are introduced species that cause health, economic or ecological damage in their new range. More than 30,000 species of plants have been introduced to the United States since the time of Columbus. Most were introduced intentionally, and many provide great benefits to society as agricultural crops and landscape ornamentals. Some were introduced accidentally, for example, in ship ballast, in packing material and as seed contaminants. Of these introduced species, fewer than 3,000 have naturalized and become established in the United States outside cultivation. Of the 3,000 plant species in Virginia, more than 800 have been introduced since the founding of Jamestown. The Virginia Department of Conservation and Recreation currently lists more than 100 of these species as invasive.

In the United States, invasive species cause an estimated $120 billion in annual economic losses, including costs to manage their effects. Annual costs and damages arising from invasive plants alone are estimated at $34 billion.

NATIVE PLANTS VS. INVASIVE PLANTS
Invasive plants have competitive advantages that allow them to disrupt native plant communities and the wildlife dependent on them. For example, kudzu (Pueraria montana) grows very rapidly and overtops forest canopy, thus shading other plant species from the sunlight necessary for their survival. A tall invasive wetland grass, common reed (Phragmites australis ssp. australis), invades and dominates marshes, reducing native plant diversity and sometimes eliminating virtually all other species.

Invasive species can marginalize or even cause the loss of native species. With their natural host plants gone, many insects disappear. And since insects are an essential part of the diet of many birds, the effects on the food web become far reaching. Habitats with a high occurrence of invasive plants alone are estimated at $34 billion.

Native plants can maintain and enhance the integrity of ecosystems by increasing biodiversity, providing food and cover for wildlife, and perhaps most important of all, they improve the quality of life for all people.

For more information, visit www.vnps.org.
Riparian forest buffers are areas of trees, shrubs and other vegetation found next to stream channels and other waterways. The removal of these buffers has contributed to ecological problems in our waterways and the Chesapeake Bay. Problems include sedimentation, nutrient and toxic chemical pollution, and reduction of fish habitat.

Riparian forest buffers are natural communities such as bottomland hardwood forest, coastal scrub and upland oak-hickory-pine forests. They support a variety of plants and animals, particularly plants that are adapted to periodic flooding or saturated soils. Because of the presence of moving water, more materials are deposited in, and pass through, riparian forests than riparian buffer zones.

Riparian forest buffers provide important ecosystem services.

- Vegetation, leaf litter and porous soil slow the flow of water. This helps control the rate and volume of water in streams and rivers, greatly influencing flood levels.
- Leaf litter filters sediment from runoff, as well as phosphorus, nitrogen and other nutrients that may be bound to the sediment particles. Leaf litter intercepts and stores these pollutants before they can cloud waterways.
- Leaf litter captures and converts pesticides to non-toxic compounds by various chemical and microbial activities within the forest buffer. This protects fish and amphibians, which are threatened by pesticide pollution.
- Soils store water, and plants in the forest buffer take up that water and release it into the atmosphere.
- The canopy created by riparian buffers provides shade and controls water temperature, which is essential for instream organisms and the invertebrate food sources on which they depend. Instream, leaf litter and woody debris create food and habitat vital to the aquatic food web.
- Riparian forests provide food and habitat for a variety of terrestrial wildlife species and serve as safe corridors for movement between habitats. Habitat conversion and fragmentation have reduced wildlife habitat and limited the ability of animals to move between existing habitats.
- Riparian forest buffers offer recreation to fishermen, hunters, birders, hikers, canoeists and picknickers. People enjoy these areas in many different ways because of the diversity of life and scenic beauty they provide.

Riparian vegetation zones

Riparian forest buffers consist of four vegetation zones. Zone 1, the emergent vegetation zone, is permanently to semipermanently flooded and often dominated by grasses, sedges, rushes and other herbaceous plants. Zone 2, the riverside thicket, may be seasonally to temporarily flooded and is often characterized by emergent aquatic species, shrubs and small trees. Zone 3, the saturated forest, has soils that are poorly to poorly drained. Zone 4, the well-drained forest, is also known as upland forest and has dry soil. Zones 3 and 4 are dominated by trees but also contain shrub and herb layers in the understory.

Recommended uses

- Wildlife
- Horticulture & landscaping
- Piedmont
- Coastal Plain

Minimum light requirements

- Shade
- Part sun
- Full sun

Moisture requirements

- Low moisture
- Moderate moisture
- High moisture

Riparian Buffer Zones

- Emergent line
- Riverine thicket
- Saturated forest
- Well-drained forest

Some species are marked with the following footnotes:

- \(* \) Moderate-aggressive in a garden setting.
- \(* * \) Due to the rarity and sensitivity of habitat in Virginia, these species are recommended for horticultural use only. Planting these species in natural areas could be detrimental to the survival of native populations.

Virginia Riparian Buffer Zones

Scientific Name

- *Arisaema triphyllum* Jack-in-the-pulpit
- *Asarum canadense* + wild ginger
- *Bidens cernua* + nodding beggar-ticks
- *Chelone glabra* white turtlehead
- *Delphinium tricorne* dwarf larkspur
- *Eubotrys racemosa* fetterbush
- *Euphorbia pulcherrima* flame flower
- *Hydrangea arborescens* wild hydrangea
- *Ilex decidua* deciduous holly
- *Itea virginica* Virginia willow
- *Lindera benzoin* spicebush
- *Monarda didyma* bee balm
- *Myrica cerifera* Southern wax myrtle
- *Nymphaea odorata* American water lily
- *Oenothera fruticosa*
- *Packera aurea* + golden ragwort
- *Salix sericea* silky willow
- *Spiraea latifolia* broad-leaved meadowsweet
- *Polemonium reptans* Jacob’s ladder
- *Viburnum dentatum* Southern arrow-wood viburnum
- *Zizania aquatica* wild rice

Scientific Name

- *Amelanchier arborea* downy serviceberry
- *Amelanchier laevis* smooth serviceberry
- *Betula lenta* sweet birch
- *Betula nigra* river birch
- *Cornus alternifolia* alternate-leaf dogwood
- *Cornus sericea* red-osier dogwood
- *Cornus stolonifera* common coralberr
- *Nyssa aquatica* water tupelo
- *Nyssa sylvatica* black gum
- *Oxydendrum arboreum* sourwood
- *Quercus bicolor* swamp white oak
- *Quercus laurifolia* swamp laurel oak
- *Quercus nigra* water oak
- *Quercus rubra* northern red oak
- *Taxodium distichum* bald cypress
- *Taxodium ascendens* western and tupelo cypress
- *Taxodium distichum* bald cypress
- *Taxodium distichum* bald cypress
- *Taxodium ascendens* western and tupelo cypress
- *Taxodium ascendens* western and tupelo cypress
- *Taxodium distichum* bald cypress
- *Taxodium ascendens* western and tupelo cypress
- *Taxodium distichum* bald cypress
- *Taxodium ascendens* western and tupelo cypress
- *Taxodium ascendens* western and tupelo cypress
- *Taxodium distichum* bald cypress
- *Taxodium ascendens* western and tupelo cypress
- *Taxodium distichum* bald cypress
- *Taxodium ascendens* western and tupelo cypress
- *Taxodium distichum* bald cypress
- *Taxodium ascendens* western and tupelo cypress
- *Taxodium distichum* bald cypress
- *Taxodium ascendens* western and tupelo cypress
- *Taxodium distichum* bald cypress
- *Taxodium ascendens* western and tupelo cypress
- *Taxodium distichum* bald cypress
- *Taxodium ascendens* western and tupelo cypress
- *Taxodium distichum* bald cypress
- *Taxodium ascendens* western and tupelo cypress
- *Taxodium distichum* bald cypress
- *Taxodium ascendens* western and tupelo cypress
- *Taxodium distichum* bald cypress
- *Taxodium ascendens* western and tupelo cypress
- *Taxodium distichum* bald cypress
- *Taxodium ascendens* western and tupelo cypress
- *Taxodium distichum* bald cypress
- *Taxodium ascendens* western and tupelo cypress
- *Taxodium distichum* bald cypress
- *Taxodium ascen-