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Abstract 

The purpose of the Virginia ConservationVision Development Vulnerability Model is to 

quantify the risk of conversion from greenspace (natural, rural, or other open space lands) to 

urbanized or other built-up land uses. The model output is a raster dataset in which the relative 

vulnerability of lands ranges from 0 (least vulnerable) to 100 (most vulnerable). Vulnerability 

values are not probabilities, but should be interpreted as a relative measure of development 

potential. Conservation lands on which biodiversity preservation is believed to be the primary 

goal are considered undevelopable and are coded with the value -1, while areas in which 

development has already occurred are coded 101. 

The basis of the model is a Random Forests machine-learning model, used to relate a 

suite of predictor variables representing conditions at an initial time to outcomes (developed or 

not) a decade later. The predictor variables can be grouped into three categories based on their 

spatial focus: (1) local site characteristics, (2) neighborhood characteristics, and (3) travel time or 

distance to development “attractors”. The sampling frame was limited to areas that were 

undeveloped at the initial time but that could potentially be developed in the future.  

To train and test the model, predictor variables representing conditions in the year 2006 

were connected to outcomes in 2016, with the data split into independent subsets used for 

training and testing. Once the prediction model was finalized, variables representing conditions 

in 2019 were used to predict the relative potential for development by the year 2029. To produce 

the final vulnerability map, raw prediction values were adjusted to reflect current conservation 

and development status. 

 This model is one of several in a suite of conservation planning and prioritization models 

developed by the Virginia Natural Heritage Program and partners, known collectively as 

Virginia ConservationVision. It is intended for use in conjunction with other data to help target 

lands for protection. The model can also serve as an input for simulating future land cover 

change and its consequences under different planning scenarios.  
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Introduction 

 As human populations and demand for resources expand, natural areas and rural lands are 

increasingly threatened by encroaching development.  The mission of the Virginia Department of 

Conservation and Recreation (DCR), as the state’s lead natural resource conservation agency, is 

to provide opportunities that encourage and enable people to enjoy, protect, and restore 

Virginia’s natural and cultural resources (Virginia DCR Staff 2016). The Virginia Land 

Conservation Foundation (VLCF) provides state funding to purchase or establish conservation 

easements on various lands of conservation concern (Virginia DCR Staff n.d.). Given limited 

funds, it is essential to have a means of prioritizing lands worthy of preservation. As part of its 

work, DCR’s Division of Natural Heritage (DNH) and its partners develop and maintain a suite 

of geospatial models intended to guide strategic land conservation and management decisions. 

This suite of models is known as Virginia ConservationVision. The models under the 

ConservationVision umbrella address a variety of conservation issues and priorities, including 

natural landscapes, watersheds, agriculture, forestry, cultural resources, rare species richness, 

outdoor recreation, and development vulnerability. 

The purpose of the Virginia Development Vulnerability Model is to quantify, statewide, 

the relative risk of conversion from greenspace (natural, rural, or other open space lands) to 

urbanized or other built-up uses. It is intended for use in conjunction with other datasets to help 

strategically target unprotected lands for conservation action. Development vulnerability 

specifically addresses the time-sensitive nature of conservation decisions. If the relative potential 

for development is not taken into account, conservation actions may be initiated too late to 

preserve ecologically valuable areas before damage is done. 

As part of their 2008 Resource Lands Assessment, the Chesapeake Bay Program defined 

vulnerability as a function of suitability for development and proximity to growth “hot spots” 

(CBP, 2008). Their subsequent work has resulted in a dataset representing predicted 

development pressure through the year 2055 (CBP, 2020). Although their focus is on the 

Chesapeake Bay watershed, the later dataset fully covers Virginia. Similar recent modeling 

efforts covering Virginia include urbanization predictions for the Northeast (McGarigal et al. 

2018) and Southeast (Terando et al. 2014) regions of the U.S. 
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The model described in this report replaces a previous version released in 2015 (Hazler et 

al. 2016), which in turn replaces an earlier edition (Virginia DCR Staff 2008). Significant 

differences in model inputs and methodology render direct comparisons between outputs from 

these model editions inadvisable. With the release of the current edition, the previous edition 

should be considered obsolete. Improvements since the previous edition include updated input 

datasets; identification and development of a broad suite of predictor variables; and a formal 

inductive, machine-learning approach to estimating vulnerability.  

Methods 

The basis of the Development Vulnerability Model is a Random Forests machine-

learning model (Breiman 2001), used to relate a suite of predictor variables representing 

conditions at an initial time to outcomes (developed or not) a decade later. The sampling frame 

was limited to areas that were undeveloped at the initial time but that could potentially be 

developed in the future. To train and test the model, predictor variables representing conditions 

in the year 2006 were connected to outcomes in 2016, with the data split into independent 

subsets used for training and testing. Once the prediction model was finalized, variables 

representing conditions in 2019 were used to predict the relative likelihood of development by 

the year 2029. To produce the final map of vulnerability, raw prediction values were adjusted to 

reflect current conservation and development status. 

Spatial data processing 

ArcGIS Pro software (ESRI 2021) was used for most spatial data processing and 

development of model inputs. In addition to using standard ArcGIS tools, we developed a set of 

custom Python scripts1 to carry out necessary procedures. Since calculations for several predictor 

variables include distance or neighborhood analyses which are sensitive to boundary effects, we 

used a processing extent equal to a 50-mile buffer around the state border of Virginia when 

developing those datasets. For all other datasets, we used a processing extent equal to a 1-mile  

 

 

1 https://github.com/VANatHeritage/ConsVision_DevVulnModel 
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buffer around the border of Virginia. 

Many of the model’s inputs were developed using datasets from the National Land Cover 

Database (NLCD), 2019 edition (Dewitz & USGS, 2021; Yang et al., 2018), which include 

standard 30-m resolution Land Cover, Percent Imperviousness, and Impervious Descriptor raster 

datasets at 2- to 3-year intervals from 2001 to 2019. Because of this, we used the NLCD raster’s 

coordinate system for all products, and the raster cell size (30-meter) and alignment for all raster 

datasets, including the final model.  

Input data 

Predictor variables 

Predictor variables were developed as raster datasets with 30-m resolution. We compiled 

a list of 39 variables to potentially include as predictors, but many were eliminated from the final 

model (Table 1). In compiling the list, we drew heavily on previous models of urban growth 

(Irwin et al. 2003, Sohl and Sayler 2008, Jantz et al. 2010, Westervelt et al. 2011, Meentemeyer 

et al. 2013, Chaudhuri and Clarke 2013, Terando et al. 2014), while taking into account the 

practicality of deriving the variables from existing, freely available, statewide datasets. The 

predictor variables can be grouped broadly into three categories based on their spatial focus: (1) 

local site characteristics, (2) neighborhood characteristics, and (3) travel time or distance to 

development “attractors”.  

Some predictor variables were assumed to be static, in that they were not expected to 

change significantly over the time frame of interest. Other variables, depending on data from 

different time periods, were dynamic. For each dynamic variable, two rasters were developed to 

reflect conditions in both 2006 (to train and test the model) and 2019 (to predict forward). A 

subset of dynamic variables were also multi-temporal, requiring data from two time periods to 

reflect changes over a 5- or 6-year time span ending in the nominal date. Multi-temporal 

variables include distance to urban-growth hotspots and distance to new roads. 

Local Site Characteristics 

Local site characteristics reflect conditions at a specific location represented by a single 

raster cell. Elevation and slope were derived from a digital elevation model (USGS, 2017). Land 

cover development cost was a unitless value between 0 and 5, assigned to land cover types based 
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on the presumed relative ease of conversion to development (Table 2). The “land protection 

multiplier” variable was derived from back-dated versions of the Virginia Conservation Lands 

Database (VCLD; Virginia DCR Staff n.d.), calculated based on biodiversity management intent 

and legal protection status, as it was in the 2015 model edition (Hazler et al. 2016). 

Soil suitability ratings for dwellings with basements, dwellings without basements, small 

commercial buildings, and local roads and streets were derived from the Gridded Soil Survey 

Geographic Database (Soil Survey Staff 2020) using the Soil Data Management Toolbox 

(NRCS, 2017). Additional steps were used to average the four suitability ratings, integerize and 

rescale the values, and fill in data gaps, resulting in values representing soil suitability for 

development that ranged from -10 (least suitable) to 10 (most suitable), except on already 

developed lands (11) and open water (-11).  

Neighborhood Characteristics 

Neighborhood characteristics reflect conditions surrounding a focal cell, and are 

calculated as statistical summaries of raster values within a specified surrounding neighborhood. 

Assuming that the influence of neighboring cells on a focal cell decays with distance, 

Meentemeyer et al. (2013) derived variations of a “development pressure” (𝑝′𝑖) variable that is a 

function of neighboring developed cells and their distance from the focal cell: 

𝑝′𝑖 = ∑𝑆𝑡𝑎𝑡𝑒𝑘/𝑑𝑖𝑘
𝛾

𝑛𝑖

𝑘=1

 
Equation 1 

 

where 𝑆𝑡𝑎𝑡𝑒𝑘 is a binary variable that indicates whether the kth neighboring cell is developed (1) 

or undeveloped (0), 𝑑𝑖𝑘 is the distance between the kth neighboring cell and the current cell i, γ is 

a coefficient that controls the influence of distance between neighboring cells and cell i, and 𝑛𝑖 is 

the number of neighboring cells within a specific range with respect to cell i.  

We extended the use of the above formula from Meentemeyer et al. (2013) to derive 

neighborhood variables quantifying the neighborhood influence of three different land cover 

types: water, wetlands, and impervious cover. However, in our formulation for impervious cover, 

𝑆𝑡𝑎𝑡𝑒𝑘 was a value between 0 and 100 (i.e., percent impervious), rather than binary. We 

experimented with several values for the distance-decay parameter, gamma (𝛾), but settled on 𝛾 

= 0.5 for the final model. For each of the three land cover types, we calculated influence using 
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two different neighborhoods: an annulus with 1-cell inner radius and 10-cell outer radius, and an 

annulus with 3-cell inner radius and 30-cell outer radius. For impervious surfaces, we also 

calculated percent coverage for a very small, 3-cell, unweighted rectangular neighborhood. 

Binary water and wetlands status (1 = presence, 0 = absence), as well as percent imperviousness 

values, were derived from NLCD land cover and impervious cover products. 

Another neighborhood variable we included was a measure of “terrain roughness”. This 

variable was derived from the digital elevation model, and was calculated as the standard 

deviation of elevation within a 10-cell radius of the focal cell (similar, but not identical to the 

“terrain ruggedness index” of Riley et al. [1999]).  

Travel Time or Distance to Development Attractors 

Variables in this category reflect either straight-line distance or estimated travel time to 

development attractors including transportation, hydrographic, or land protection features; urban 

growth “hotspots”; and urban cores of various sizes. As a first step, we produced datasets 

representing locations of the various attractors. The processes used to delineate growth hotspots 

and urban cores are briefly described below. For other attractor features, it was a simple matter 

of reclassifying an existing raster dataset or selecting the appropriate vector features, depending 

on the source data (see Table 1). To produce distance variables, we applied a Euclidean distance 

function to measure distance to the nearest attractor. To produce travel-time variables, we had to 

first develop cost surfaces, then apply a cost-distance function to calculate travel time to the 

nearest attractor. 

Cost surfaces 

Roads data were taken primarily from NLCD Impervious Descriptor raster datasets, 

which identify primary, secondary, and tertiary road classes. To develop travel time cost 

surfaces, we supplemented the Impervious Descriptor with TIGER/Line roads data (U.S. Census 

Bureau 2021), which allowed us to distinguish between regular roads, limited access highways, 

and ramps. We used the U.S. Census Urban Areas dataset (U.S. Census Bureau 2021) to identify 

which roads were located in urban areas. We assigned travel speeds (mph) based on road class 

and location within or outside of an urban area (Table 3). Off-road travel speed was assumed to 

be 3 mph (i.e., walking speed). Cost surfaces were produced by converting travel speed to cost in 

minutes, i.e., the amount of time it would take to travel through a 30-m cell at the assigned travel 
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speed. We developed two cost surfaces: one for limited access roads, and another for all other 

(“local”) roads. To compute travel times, the two cost surfaces were used in conjunction with a 

custom script1 which only allows connections between local roads and limited access roads at 

defined ramp locations.  

Impervious growth hotspots 

To produce a raster representing impervious growth hotspots, percent impervious cover 

data from two time periods were needed (Hazler et al. 2016). The source datasets were NLCD 

Percent Imperviousness products, with raster cell values ranging from 0 (no impervious cover) to 

100 (completely impervious). We refer to the raster representing imperviousness at the nominal 

time period (e.g., 2006) as 𝐼𝑛 and the raster representing imperviousness at the previous time 

period (e.g., 2001) as 𝐼𝑝. The general procedure for delineating hotspots was the same as for the 

previous edition of the Development Vulnerability Model (Hazler et al. 2016). First, 𝐼𝑝 was 

subtracted from  𝐼𝑛 to produce a difference raster. The difference raster was smoothed with a 

low-pass filter. Any raster cells in which the smoothed difference value was ≥ 20% were 

identified as potential hotspot cells.  Potential hotspot cells were grouped into contiguous 

regions, and regions less than a critical size threshold (𝑆𝑐𝑟𝑖𝑡) were eliminated from the final 

output. We experimented with several values of 𝑆𝑐𝑟𝑖𝑡, but settled on a 5-ha minimum size for 

hotspots used as attractors in the final model.  

Urban cores 

We developed urban cores using a custom script implementing a methodology adapted 

loosely from U.S. Census methods for defining “Urban Areas” (U.S. Census Bureau 2011). The 

process began with the selection of all census blocks with a population density of at least 1000 

persons per square mile (ppsm). Adjacent blocks with least 500 ppsm and/or meeting certain 

imperviousness and shape criteria were added iteratively and clustered to form urban cores. 

Urban cores were then categorized based on total population within the core: seed (1,000-2,500), 

small town (2,501-25,000), small city (25,001-250,000), large city (250,001-2,500,000), or major 

metropolitan area (>2,500,000).  

 

 

1 https://github.com/VANatHeritage/ServiceAreas 
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Sample data 

To develop sample datasets for model training and testing, we first created raster datasets 

representing development status in two years: 2006 and 2016. Any raster cell with ≥ 1% 

impervious cover, based on the NLCD Percent Imperviousness data, was coded 1 for 

development; all other cells were coded 0. We then created a raster representing the change in 

development status between the two years, with outcome class codes as follows:  

• 0: not developed in either time period 

• 1: transitioned from undeveloped to developed 

• 2: developed in both time periods 

• 3: transitioned from developed to undeveloped.  

We created a sampling mask to cover lands not yet developed in 2006, but considered potentially 

developable. The sampling mask excluded cells meeting any of the following criteria: 

• Already developed in 2006 (i.e., codes 2 or 3 in the development status change raster) 

• Fully protected conservation lands (i.e., parcels assigned the highest rank for both 

biological management intent [BMI] and legal protection status [LPS] in the Virginia 

Conservation Lands Database) 

• Very steep slopes (≥ 70% grade) 

• Lands > 2 km from the nearest road 

We applied the sampling mask to the development status change raster, and used the resulting 

binary raster as the sampling frame, where class 0 represents cells that remained undeveloped, 

and class 1 represents cells that transitioned from an undeveloped to a developed state. We 

stratified sampling spatially by dividing the state into a mesh of 3-mile diameter hexagons. 

Hexagons were randomly assigned to training or testing subsets (50% each), and points 

randomly generated within them as described below. Because of the rarity of cells that became 

developed, relative to cells that remained undeveloped, these two cases were sampled separately 

and with different protocols to ensure sufficient samples of the former. 

To sample areas that transitioned from undeveloped to developed, the newly developed 

areas in the sampling frame raster were converted to polygons, and any polygons smaller than 9 

raster cells (equivalent to 8100 m2 or 2 acres) were discarded. Within the remaining polygons, up 

to 3 points were randomly generated, contingent on a 0.5-mi separation distance.  
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To sample areas that remained undeveloped, up to 10 points were randomly generated in 

each hexagon, contingent on a 0.5-mi separation distance. Generated points that fell on 

developed cells were discarded at this stage. The points from the two sampling procedures were 

combined into a single dataset attributed with development change status (outcome class 0 or 1), 

the hexagon ID, and values from each of the predictor rasters. The points were then split into 

fully independent training and testing datasets depending on the hexagons in which they fell. The 

training data were used to build and evaluate alternate models. The testing data, not used in 

training, were used to evaluate the final selected model. Sample sizes were as follows: 

• Training, class 0: 19,925 points 

• Training, class 1: 1,826 points 

• Testing, class 0: 23,153 points 

• Testing, class 1: 1,769 points 

Modeling approach 

Random Forests 

We used the Random Forests (RF) machine-learning algorithm (Breiman 2001) to create 

a classification model predicting the probability of undeveloped lands becoming developed over 

a 10-year time period. RF models have been shown to perform particularly well with large 

datasets containing many  predictor variables, even when the variables are highly correlated 

(Strobl et al. 2008, Hapfelmeier et al. 2014). The standard RF classification approach has 

become widely used in many fields, and in general the performance of RF has been found to 

compare favorably with that of logistic regression (Couronné et al. 2018). 

An RF classification model is built by creating a large number (generally hundreds or 

more) of classification trees, where each tree is built from a random subset of the input sample 

points. In addition, a random subset of predictor variables are selected at each split in the tree. 

The final RF model is an ensemble of all trees. The model can then be applied to novel data (e.g. 

for new locations or a new time period), to predict class probabilities. Predictions derived from a 

random forest classifier are class probabilities, and are calculated as the proportion of votes (i.e., 

the proportion of trees in the ensemble) which assign a given data point to a particular class.  

The modeling process was run using the statistical software environment R (R Core 
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Team 2021), and random forests models executed using the R package randomForest (Breiman 

et al. 2014). Unless otherwise noted, we used the default settings to build a classification model. 

To build each tree in the ensemble forest, we used a balanced sampling scheme, selecting the 

same number of samples (n = 1826), with replacement, from each outcome class (i.e., 0 = 

“remained undeveloped”, 1 = “transitioned to developed”).  

Exploratory phase 

We began with an exploratory, iterative phase, using the training dataset to build multiple 

alternate models with different sets of predictor variables (Table 1). We initially ran an RF model 

with 500 trees using a large number of variables, and calculated each variable’s importance using 

mean decrease in accuracy (MDA; Breiman et al., 2014). We used an unscaled (non-normalized) 

MDA, as suggested by Strobl et al. (2008). Variables with negative MDA scores were removed 

from further consideration.  

For the remaining variables, we calculated pairwise squared Spearman correlation 

coefficients (⍴2) in a hierarchical clustering analysis to identify groups of highly correlated 

variables, where ⍴2 ≥ 0.8. In each correlation group, we selected only the variable with the 

highest importance score, and discarded the others.  

The set of retained variables was used to build a final model with 1000 trees. We 

calculated MDA importance and generated a partial dependence plot for each variable in the 

final model. Guided by the hierarchical cluster analysis and MDA importance results of previous 

models, we ran several post hoc, reduced models, with various combinations of the less 

important variables removed. We also added some new predictor variables, not previously 

considered, in attempts to improve model performance. When new variables were added, we 

repeated the procedure of calculating variable importance, clustering variables into correlation 

groups, and dropping some variables. 

To evaluate and compare various alternative models, we used a 10-fold cross-validation 

procedure (Fielding and Bell 1997), where samples in the training dataset were divided into 10 

roughly equal-size validation groups. As previously described, sampling was stratified by 

hexagons. Validation groups were assigned at the hexagon level, with hexagons first ordered by 

the number of samples contained so that each group had a similar number of samples, roughly 

10% of the total. Validation groups were assigned once, and did not vary between evaluations of 
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different models. During cross-validation, each one of the 10 groups was withheld and used once 

to test the predictions derived from a model built using the data in the other groups. 

For each validation group of each alternate model under consideration, we derived 

receiver-operator characteristic (ROC) and precision-recall (PRC) curves (Saito and Rehmsmeier 

2015), along with their associated area under the curve metrics (AUC-ROC, and AUC-PRC, 

respectively). For each model, we then combined the validation results from all 10 groups to 

derive composite curves and validation metrics. Both ROC and PRC curves, and their associated 

AUC values, are threshold-independent approaches to evaluating a model's classification power, 

but Saito & Rehmsmeier (2015) indicated that PRC curves provide a better indication of 

classification performance in strongly imbalanced datasets in which positive cases (e.g., the 

transition of land from an undeveloped to a developed state) are far outnumbered by negative 

cases. We also found that AUC-PRC varied more than AUC-ROC between alternate models, 

thus providing a stronger basis for model selection, which is consistent with the findings of Saito 

& Rehmsmeier (2015) given our strongly imbalanced dataset. 

After comparing model cross-validation curves, performance metrics and mapped 

predictions, we selected what we considered to be the “best” model, balancing performance and 

parsimony. Table 1 is a comprehensive list of all predictor variables used in at least one alternate 

model, and indicates which variables were included in the final, selected model. 

Model testing and prediction 

We used the independent testing dataset to evaluate the final selected model that had been 

developed using the training data. The testing dataset, which was not used or examined at all 

during the exploratory phase, was run through the model to produce a prediction for each point 

(developed by 2016 or not), with the results used to derive ROC and PRC curves and associated 

AUC metrics, as we had done for cross-validation of the training data. Since the independent test 

results confirmed the predictive power suggested by the cross-validation results, we proceeded 

with the selected final model. Using that model, we developed a map of "raw vulnerability", 

representing the relative likelihood of development by 2029, based on predictors representing 

conditions in 2019 (Figure 2). Predictions range from 0 (least vulnerable to development) to 1. 

To develop the final raster representing development vulnerability, we applied some 

adjustments to the raw vulnerability raster (Figure 3). First, we multiplied raw predictions by a 
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“BMI multiplier” which was derived from the Biodiversity Management Intent attribute in the 

Virginia Conservation Lands Database (VCLD), as shown in Table 4, under the assumption that 

BMI ranks are correlated with protection against development. Unprotected lands, and those with 

unknown status, were assigned a BMI Multiplier value of 100, meaning the raw vulnerability 

value was not reduced at all. The resulting raster had values ranging from 0 to 100. Final steps 

included setting cells with a BMI code of 1 (strongest protection) to a value of -1 (assumed 

undevelopable), setting already developed cells to a value of 101, setting open water cells to null, 

and clipping the raster to the border of Virginia. Visual interpretation of any thematic map is 

strongly dependent on how the numeric values are stretched or classified. Based on inspection of 

the histogram of final values, in combination with some subjective criteria, we classified 

vulnerability values as shown in Table 5. 

Results 

 The final selected model included 20 of the 39 predictor variables considered for 

inclusion. The most influential variables, by far, were the two distance-weighted measures of the 

amount of impervious cover in the surroundings (Figure 4). As expected, the likelihood of 

development increased with increasing imperviousness in the surroundings, and decreased with 

increasing distance to a local road, travel time to a large city or major metro core, distance to an 

impervious growth hotspot, and terrain roughness (Figure 5).  

 Cross-validation results indicate that the model has reasonably good predictive power, 

and this was confirmed by validation metrics using the independent test dataset (Figure 6, Figure 

7). The similarity between plots and AUC scores generated from cross-validation of training data 

versus independent test data is an indicator that the model did not overfit the training data. The 

AUC (ROC) scores were 0.941 and 0.944 for cross-validation and independent tests, 

respectively, well above the baseline of 0.5 for a random classifier. The AUC (PRC) scores were 

0.599 (baseline: 0.084) and 0.564 (baseline: 0.071) for cross-validation and independent tests, 

respectively.  

 The final model output is a raster dataset in which undevelopable lands are coded -1, 

already developed lands are coded 101, and vulnerability values for potentially developable 

lands range from 0 to 100. In addition to a statewide static map (Map 1), we produced static 
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maps for each planning district (Maps 2-22). Data layers for interactive visualization are 

available on Natural Heritage Data Explorer1 and in an ArcGIS Online map application2, and 

raster data (30-m resolution) are available for download from the model web page3. These digital 

products will be available until the model is replaced with a new edition. 

Discussion 

Model interpretation 

In the final model output, areas considered to be invulnerable to development (i.e., fully 

protected) are coded -1, and areas already developed are coded 101. The intervening values from 

0 to 100 are a measure of development vulnerability, i.e., the relative likelihood of transitioning 

from an undeveloped to a developed state by the year 2029. It is important to note that 

vulnerability values are not probabilities. For example, a value of 30 does not mean that there is 

a 30% chance that the land will be developed. Actual probability of development will depend on 

a number of influences not explicitly included in this model, such as population trends, economic 

factors, local zoning, regional planning, and climate change. Instead of probabilities, model 

values should be interpreted as a relative measure of "development potential" (sensu 

Meentemeyer et al., 2013) or “attractiveness” (sensu Westervelt et al., 2011). 

The creation of a true forecast model, in which output values can be regarded as the 

probability of development, goes beyond the scope of our modeling effort. Models used to 

forecast land use change typically identify several possible growth scenarios, and then conduct 

time-stepped simulations under the assumptions of each scenario to model urban growth over 

time, out to a specified future date (Irwin et al. 2003, Claggett et al. 2004, in prep., Sohl and 

Sayler 2008, Jantz et al. 2010, Westervelt et al. 2011, Meentemeyer et al. 2013, Terando et al. 

2014, McGarigal et al. 2018). Ours is not a simulation model, but its output could serve as an 

input to a simulation exercise. Essentially, it produces a suitability surface upon which a 

 

 

1 https://vanhde.org/content/map 
2 https://arcg.is/0qWej4 
3 https://www.dcr.virginia.gov/natural-heritage/vaconvisvulnerable 
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simulated scenario could be played out.  

Limitations and opportunities 

 This model, like any other model, is limited by the data inputs as well as by the 

assumptions made and processes used in combining these inputs. Many of the inputs are raster 

datasets with a pixel size of 30-m, and this dictated the model’s output resolution, which may or 

may not be sufficient for detailed planning at local scales. In addition, the model was trained on 

developed patches at least 2 acres in size, so it may or may not capture more dispersed 

development patterns such as single-family homes built on larger lots. 

All input datasets unavoidably have some spatial and/or attribute errors, which propagate 

to the final output. Model performance depends on the predictor variables included, and it is 

possible that we missed some predictors that could have vastly improved the model’s predictive 

power. That said, we developed a fairly extensive list of reasonable predictors to consider for 

inclusion, and the validation and testing statistics suggest that our model does have reasonably 

strong predictive power. 

Our model relies heavily on how we define the transition from an undeveloped to a 

developed state. This definition is based on datasets representing percent impervious cover, and 

we defined pixels with ≥ 1% imperviousness as developed. Had we chosen a different threshold 

(e.g., defining developed as ≥ 5% impervious), our predictions and final outputs would have 

been at least somewhat different. Unlike some models (e.g., Claggett et al., in preparation), this 

model does not distinguish between different types of development, such as residential, 

commercial, and industrial, which may have very different growth patterns.  

 The maps presented in this report, and the underlying raster model used to produce them, 

should be considered as a snapshot in time, reflecting relative risk of development based on 

ground conditions in the year 2019 and development patterns inferred by the model based on 

training data from 2006-2016. Ground conditions as well as development pressures are 

constantly changing over time. National Land Cover Database data are now on a 2- to 3-year 

update cycle, and it makes sense to update the development vulnerability model whenever new 

land cover and imperviousness products become available. Because of the relative simplicity of 

the model (i.e., not requiring scenarios and simulations), reasonable data requirements, and the 
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fact that the model code has been archived on GitHub1, we expect model updates in the future to 

be efficiently implemented on a regular basis. 

Model comparisons 

For comparison with the Virginia Development Vulnerability Model, we looked at 

mapped predictions from three other recent modeling efforts covering Virginia. For states with 

waters draining to the Chesapeake Bay, the “Current Zoning Vulnerability” 2035 scenario from 

the Chesapeake Bay Land Change Model (CBP 2020, Claggett et al. in prep.) maps the 

likelihood of development by 2035, under the assumption that current zoning policies persist. 

For Southeastern states, the Southeast Regional Assessment Project (Terando et al. 2014, 

SERAP 2016) applied the SLEUTH urban growth model to map urbanization probabilities at 10-

year intervals, and we acquired the projections for 2030. Covering Northeastern states, we 

acquired a map of the probability of development by 2030 from the Nature’s Network project 

(NALCC 2017, McGarigal et al. 2018).  

The methodology and mapped classes differed greatly between models, in particular 

because our model did not include a simulation component like the other models. Nonetheless, 

we recognized some general patterns distinguishing our vulnerability map from the other maps. 

In general, our model output shows relatively higher vulnerability at margins of large and 

medium metro areas, along large highways, and for most of the Eastern Shore. Among the four 

models, outputs from ours and the Northeast model were most similar. A visual assessment was 

corroborated with a simple Spearman rank correlation analysis, revealing correlations of 0.66, 

0.34, and 0.21 between our model and the Northeastern, Southeastern, and Chesapeake Bay 

model outputs, respectively. There were stark differences between outputs from the Chesapeake 

Bay model and other models in certain localities due to the influence of current zoning maps. In 

some localities the Chesapeake Bay model suggested that certain areas are completely 

invulnerable to development, which is unlikely to be true since zoning can change over time and 

special use permits can be obtained. Models also differed in how protected lands were portrayed 

in their maps. Whereas only protected lands with the strongest biodiversity management 

 

 

1 https://github.com/VANatHeritage/ConsVision_DevVulnModel 



 

 

- 15 -  

protection are indicated as completely invulnerable to development in our model, it was evident 

that the Northeast and Chesapeake Bay models assigned their lowest vulnerability class to a 

broader set of protected lands.  

Instead of distinguishing between different types of development as in the other models, 

our approach was more general, using the transition from greenspace to impervious surface to 

identify new development areas and train the model. Because of this, the model is influenced not 

only by urban or suburban development, but also the types of development which may be more 

common in rural areas (e.g. agricultural or energy infrastructure). For example, in recent years 

Virginia has seen rapid expansion of large, utility-scale solar installations in Virginia (SEIA 

2022). While this type of development was not as common in the time period used to train the 

model (2006 – 2016), it will likely become more of a factor in future updates. 

Model applications 

 The Virginia Development Vulnerability Model is intended to reflect the relative risk of 

losing greenspace to development across the state. We expect the model to be helpful to state and 

local governments, planning districts, environmental consultants, land trusts, and others involved 

in land use planning and strategic conservation. In most cases, this model should be used in 

conjunction with other relevant information and datasets, including other ConservationVision 

models, to help prioritize lands for conservation and to inform comprehensive planning efforts. 

The model can also serve as an input for simulating future land cover change and its 

consequences under different planning scenarios. 
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Table 1: Comprehensive list of predictor variables considered for use in the model. 

Predictor variables were developed as raster datasets with 30-m resolution. Variables in rows shaded grey were NOT included in the final model. 

Variable Name Description Spatial focus Units Temporal 

Status 

Data Source(s)1 

elevcm Elevation Site characteristics cm Static 3DEP 

slpx100 Slope Site characteristics % Static 3DEP 

soilSuit_Development Soil suitability for development Site characteristics N/A Static SSURGO; 

NLCD 

lc_cost Land cover development cost Site characteristics N/A Dynamic NLCD 

conslands_protMult Land protection multiplier Site characteristics N/A Dynamic VCLD 

imp_kRect3 Percent imperviousness, 3-cell rectangular neighborhood 

(in charts: “Imperviousness, 3-cell nbhd.”) 

Neighborhood characteristics % Dynamic NLCD 

imp_wk10_025 Distance-weighted percent imperviousness (radius 1-10, gamma 0.25) Neighborhood characteristics % Dynamic NLCD 

imp_wk10_050 Distance-weighted percent imperviousness (radius 1-10, gamma 0.50) 

(in charts: “Imperviousness, 10-cell nbhd.”) 

Neighborhood characteristics % Dynamic NLCD 

imp_wk10_100 Distance-weighted percent imperviousness (radius 1-10, gamma 1.00) Neighborhood characteristics % Dynamic NLCD 

 

 

1 Data source abbreviations: 3DEP = 3D Elevation Program (U.S. Geological Survey (USGS) 2017); NHD = National Hydrography Dataset (U.S. Geological Survey (USGS) 

2018); NLCD = National Land Cover Database (Yang et al. 2018, Dewitz and USGS 2021);PAD-US = Protected Areas Database of the U.S. (Prior-Magee et al. 2020); SSURGO 

= Soil Survey Geographic Database (Soil Survey Staff 2020); TIGER = Topologically Integrated Geographic Encoding and Referencing data (U.S. Census Bureau 2021); VCLD = 

Virginia Conservation Lands Database (Virginia DCR Staff 2021).  
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Variable Name Description Spatial focus Units Temporal 

Status 

Data Source(s)1 

imp_wk30_025 Distance-weighted percent imperviousness (radius 3-30, gamma 0.25) Neighborhood characteristics % Dynamic NLCD 

imp_wk30_050 Distance-weighted percent imperviousness (radius 3-30, gamma 0.50) 

(in charts: “Imperviousness, 30-cell nbhd.”) 

Neighborhood characteristics % Dynamic NLCD 

imp_wk30_100 Distance-weighted percent imperviousness (radius 3-30, gamma 1.00) Neighborhood characteristics % Dynamic NLCD 

water_wk10_050 Distance-weighted percent open water (radius 1-10, gamma 0.50) 

(in charts: “Open Water, 10-cell nbhd.”) 

Neighborhood characteristics % Dynamic NLCD 

water_wk30_050 Distance-weighted percent open water (radius 3-30, gamma 0.50) 

(in charts: “Open Water, 30-cell nbhd.”) 

Neighborhood characteristics % Dynamic NLCD 

wetland_wk10_050 Distance-weighted percent wetland (radius 1-10, gamma 0.50) 

(in charts: “Wetland, 10-cell nbhd.”) 

Neighborhood characteristics % Dynamic NLCD 

wetland_wk10_100 Distance-weighted percent wetland (radius 1-10, gamma 0.50) Neighborhood characteristics % Dynamic NLCD 

wetland_wk30_050 Distance-weighted percent wetland (radius 3-30, gamma 0.50) 

(in charts: “Wetland, 30-cell nbhd.”) 

Neighborhood characteristics % Dynamic NLCD 

elevRough_10 Terrain roughness (standard deviation of elevation, 10-cell radius) Neighborhood characteristics N/A Static 3DEP 

edist_openwater Euclidean distance to open water Distance or time to attractors m Dynamic NLCD 

edist_inlandWater Euclidean distance to river, lake, or reservoir (> 100 acres) Distance or time to attractors m Static NHD 

edist_bayOcean Euclidean distance to Chesapeake Bay or Atlantic Ocean Distance or time to attractors m Static NHD 
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Variable Name Description Spatial focus Units Temporal 

Status 

Data Source(s)1 

edist_conslands Euclidean distance to conserved land Distance or time to attractors m Dynamic VCLD; PAD-

US 

edist_imphot_20_02 Euclidean distance to impervious growth hotspot (2-ha) Distance or time to attractors m Dynamic, 

multi-temporal 

NLCD 

edist_imphot_20_05 Euclidean distance to impervious growth hotspot (5-ha) 

(in charts: “Dist. to Impervious Growth Hotspot.”) 

Distance or time to attractors m Dynamic, 

multi-temporal 

NLCD 

edist_imphot_20_10 Euclidean distance to impervious growth hotspot (10-ha) Distance or time to attractors m Dynamic, 

multi-temporal 

NLCD 

edist_road Euclidean distance to road Distance or time to attractors m Dynamic NLCD 

edist_newRoad Euclidean distance to newly constructed road 

(in charts: “Dist. to New Road”) 

Distance or time to attractors m Dynamic, 

multi-temporal 

NLCD 

edist_localRoad Euclidean distance to local road 

(in charts: “Dist. to Local Road”) 

Distance or time to attractors m Dynamic TIGER; NLCD 

edist_hwy Euclidean distance to limited access highway Distance or time to attractors m Dynamic TIGER; NLCD 

edist_ramp Euclidean distance to limited access highway access ramp Distance or time to attractors m Dynamic TIGER; NLCD 

ttRamps Travel time to limited access highway ramps 

(in charts: “Travel Time to Highway Ramps”) 

Distance or time to attractors min Dynamic TIGER; NLCD 

ttCore1 Travel time to seed core Distance or time to attractors min Dynamic TIGER; NLCD 

ttCore2 Travel time to small town core Distance or time to attractors min Dynamic TIGER; NLCD 
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Variable Name Description Spatial focus Units Temporal 

Status 

Data Source(s)1 

ttCore3 Travel time to small city core Distance or time to attractors min Dynamic TIGER; NLCD 

ttCore4 Travel time to large city core Distance or time to attractors min Dynamic TIGER; NLCD 

ttCore5 Travel time to major metropolitan core Distance or time to attractors min Dynamic TIGER; NLCD 

ttCore2_3 Travel time to small town or small city core Distance or time to attractors min Dynamic TIGER; NLCD 

ttCore2_5 Travel time to small town or larger core Distance or time to attractors min Dynamic TIGER; NLCD 

ttCore4_5 Travel time to large city or major metro core Distance or time to attractors min Dynamic TIGER; NLCD 
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Table 2: Cost classes assigned to National Land Cover Database land cover classes 

Cost Class Description NLCD Classes Included 

0 Already developed 21 – Developed, Open Space  

22 – Developed, Low Intensity 

23 – Developed, Medium Intensity 

24 – Developed, High Intensity 

1 Barren 31 – Barren Land (Rock/Sand/Clay) 

2 Herbaceous or agricultural 71 – Grassland/Herbaceous 

81 – Pasture/Hay 

82 – Cultivated Crops 

3 Shrubland 52 – Shrub/Scrub 

4 Forest or wetland 41 – Deciduous Forest 

42 – Evergreen Forest 

43 – Mixed Forest 

90 – Woody Wetlands 

95 – Emergent Herbaceous Wetlands 

5 Open Water 11 – Open Water 

 

 

 

Table 3: Travel speed assignments by road class and urban status 

Road Class Standard Speed 

(miles/hour) 

Urban Speed 

(miles/hour) 

Primary – limited access highway 70 60 

Primary – not limited access highway 55 45 

Secondary – limited access highway 60 50 

Secondary – not limited access highway 45 35 

Tertiary 35 25 
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Table 4: Biological Management Intent (BMI) and the BMI Multiplier 

BMI 

Codea 

Code Description BMI 

Multiplierb 

1 Specifically managed for the protection of plant and animal communities 0 

2 Managed for the conservation of plant and animal communities with limited 

impacts permitted 

20 

3 Managed for general natural resource conservation 40 

4 General open space conservation 60 

5 No designation or management for conservation of natural conditions 80 

U Unknown status 100 

 
a  Codes used in the Virginia Conservation Lands Database 
b  Multiplier value used to adjust raw vulnerability values to obtain final model output values 

 

 

 

Table 5: Classification of raster values for the final development vulnerability map 

Raster Values Map Class 

-1 Undevelopable 

0 - 5 Class I - Least Vulnerable 

6 - 10 Class II - Somewhat Vulnerable 

11 - 25 Class III - Moderately Vulnerable 

26 - 50 Class IV - Highly Vulnerable 

51 - 100 Class V - Most Vulnerable 

101 Already Developed 
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Figure 1: Training the model 

A suite of 39 rasters representing conditions in 2006 were developed as potential predictor variables (upper left). Training points (lower left) were a random 

selection of sites that were undeveloped but developable in 2006, and either stayed undeveloped (green) or became developed (orange) by 2016. (Non-colored 

areas were not eligible for sampling based on criteria specified in methods.) The combination of 2006 predictor variables with 2016 outcomes at the training 

point locations were used to build alternate Random Forests models in an exploratory, iterative fashion. A final “best” model was selected, tested with 

independent sample data, and then used for prediction. 
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Figure 2: Predicting vulnerability using the trained model 

The selected Random Forests model, trained on the dataset with 2006-era predictors and 2016 outcomes, was used to produce a raster dataset representing the 

relative likelihood of development by 2029, based on conditions in 2019. 
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Figure 3: Creating the final map of development vulnerability 

To produce the final map of development vulnerability, raw vulnerability values were adjusted based on land cover and conservation status. 
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Figure 4: Relative importance of predictor variables in the final selected model 

The relative importance of each predictor was measured by the mean decrease in accuracy after random permutation (Breiman et al. 2014). For more information 

about the predictor variables, see Table 1. 
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Figure 5: Partial dependence plots for the most influential variables in the final selected model 

Each partial dependence plot shows the effect of the variable on the predicted relative likelihood of development 

with the effects of the other variables removed. The x-axis covers the range of values for the variable for points 

which became developed; the y-axis represents the model response. Curves generally decreasing from left to right 

indicate that the likelihood of development decreases with increasing values of the predictor, i.e., a negative 

relationship. Peaks in the curve indicate where the variable had the strongest influence on predicting relative 

likelihood of development.
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Figure 6: Receiver operating characteristic (ROC) plots for cross-validation and independent tests 

The receiver operating characteristic (ROC) curve illustrates the tradeoff between the true and false positive rates as the threshold used to predict a positive outcome (i.e., 

development) is varied (Saito and Rehmsmeier 2015). The true positive rate (also known as sensitivity or recall) is the proportion of actual positive cases that the model predicts to 

be positive. The false positive rate is the proportion of actual negative cases predicted to be positive. If the prediction threshold is very low, almost all cases will be predicted 

positive, so both true and false positive rates will be very high. At the other extreme, both will be very low. The more the ROC curve bends toward the upper left corner, away 

from the diagonal dotted line, the greater the area under the curve (AUC) and the better the classification power of the model. AUC(ROC) is 1.0 for perfect classifiers, and 0.5 

(area under the dashed diagonal line) for classifiers that perform no better than random (Saito and Rehmsmeier 2015).   

Panel A depicts the results from the 10-fold cross-validation, using the training data, whereas Panel B shows the results from a test using independent data that were not used to 

train the model.   

A. Cross-validation ROC curve 

 

B. Independent test ROC curve 
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Figure 7: Precision-recall (PRC) plots for cross-validation and independent tests 

The precision-recall curve illustrates the tradeoff between precision and recall as the threshold used to predict a positive outcome is varied (Saito and Rehmsmeier 2015). 

Precision, also known as positive predictive value, is the proportion of predicted positive cases that are, in fact, positive. Perfect precision would mean there are no false positives. 

Recall, also known as sensitivity or the true positive rate, is the proportion of actual positive cases that the model predicts to be positive. Perfect recall would mean there are no 

false negatives. The baseline (horizontal dashed line) against which the PRC plot should be evaluated is determined by the relative proportions of positives and negatives in the 

dataset (Saito and Rehmsmeier 2015). 

Panel A depicts the results from the 10-fold cross-validation, using the training data, whereas Panel B shows the results from a test using independent data that were not used to 

train the model.

A. Cross-validation PRC curve 

 

B. Independent test PRC curve 
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Map 1: Statewide development vulnerability 
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Map 2: Accomack-Northampton Planning District 
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Map 3: Central Shenandoah Planning District 
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Map 4: Commonwealth Regional Council Planning District 
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Map 5: Crater Planning District 
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Map 6: Cumberland Plateau Planning District 
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Map 7: George Washington Planning District 
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Map 8: Hampton Roads Planning District 
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Map 9: LENOWISCO Planning District 
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Map 10: Middle Peninsula Planning District 
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Map 11: Mount Rogers Planning District 
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Map 12: New River Valley Planning District 
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Map 13: Northern Neck Planning District 
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Map 14: Northern Shenandoah Valley Planning District 
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Map 15: Northern Virginia Planning District 
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Map 16: Rappahannock - Rapidan Planning District 
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Map 17: Region 2000 Planning District 
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Map 18: Richmond Regional Planning District 
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Map 19: Roanoke Valley - Alleghany Planning District 
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Map 20: Southside Planning District 
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Map 21: Thomas Jefferson Planning District 
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Map 22: West Piedmont Planning District 



 

 

- 54 -  

Acknowledgements 

 We thank Peter Claggett, Doug Shoemaker, and Jim Westervelt for fruitful discussions 

and insights on vulnerability modeling and David Boyd for the provision of data from the 

Virginia Conservation Lands Database. 

References 

Breiman, L. 2001. Random Forests. Machine Learning 45:5–32. 

Breiman, L., A. Cutler, A. Liaw, and M. Wiener. 2014. Package “randomForest” [software]. 

Chaudhuri, G., and K. Clarke. 2013. The SLEUTH Land Use Change Model: A Review. 

Environmental Resources Research 1:88–105. 

Chesapeake Bay Program (CBP). 2008. Vulnerability - Resource Lands Assessment for the 

Chesapeake Bay Watershed [map]. 

Chesapeake Bay Program (CBP). 2020. Chesapeake Bay Land Change Model Current Zoning 

Vulnerability [raster dataset]. 

Claggett, P. R., L. Ahmed, F. M. Irani, S. McDonald, and R. L. Thompson. In preparation. The 

Chesapeake Bay Land Change Model (CBLCM): A stochastic model for simulating land 

use change related to water quality. 

Claggett, P. R., C. A. Jantz, S. J. Goetz, and C. Bisland. 2004. Assessing development pressure 

in the Chesapeake Bay watershed: an evaluation of two land-use change models. 

Environmental monitoring and assessment 94:129–146. 

Couronné, R., P. Probst, and A.-L. Boulesteix. 2018. Random forest versus logistic regression: a 

large-scale benchmark experiment. BMC Bioinformatics 19:270. 

Dewitz, J. and USGS. 2021. National Land Cover Database (NLCD) 2019 Products. U.S. 

Geological Survey. 

ESRI. 2021. ArcGIS Pro (Version 2.8+) [software]. Environmental Systems Resource Institute, 

Redlands, California. 

Fielding, A. H., and J. F. Bell. 1997. A review of methods for the assessment of prediction errors 

in conservation presence/absence models. Environmental Conservation 24:38–49. 

Hapfelmeier, A., T. Hothorn, K. Ulm, and C. Strobl. 2014. A new variable importance measure 

for random forests with missing data. Statistics and Computing 24:21–34. 



 

 

- 55 -  

Hazler, K., T. Tien, and R. Gilb. 2016. Virginia ConservationVision: Development Vulnerability 

Model, 2015 Interim Edition. Natural Heritage Technical Report 16-14, Dept. of 

Conservation and Recreation, Division of Natural Heritage, Richmond, Virginia. 

Irwin, E. G., K. P. Bell, and J. Geoghegan. 2003. Modeling and managing urban growth at the 

rural-urban fringe: A parcel-level model of residential land use change. Agricultural and 

Resource Economics Review 32. 

Jantz, C. A., S. J. Goetz, D. Donato, and P. Claggett. 2010. Designing and implementing a 

regional urban modeling system using the SLEUTH cellular urban model. Computers, 

Environment, and Urban Systems 34:1–16. 

McGarigal, K., E. B. Plunkett, L. L. Willey, B. W. Compton, W. V. DeLuca, and J. Grand. 2018. 

Modeling non-stationary urban growth: The SPRAWL model and the ecological impacts 

of development. Landscape and Urban Planning 177:178–190. 

Meentemeyer, R. K., W. Tang, M. A. Dorning, J. B. Vogler, N. J. Cunniffe, and D. A. 

Shoemaker. 2013. FUTURES: Multilevel simulations of emerging urban–rural landscape 

structure using a stochastic patch-growing algorithm. Annals of the Association of 

American Geographers 103:785–807. 

North Atlantic Landscape Conservation Cooperative (NALCC). 2017. Probability of 

Development, 2030, Version 3.1, Northeast U.S. [raster dataset]. 

Prior-Magee, J. S., L. J. Johnson, M. J. Croft, M. L. Case, C. M. Belyea, and M. L. Voge. 2020. 

Protected Areas Database of the United States (PAD-US) 2.1 (Provisional Release) 

[vector dataset]. U.S. Geological Survey. 

R Core Team. 2021. R: A language and environment for statistical computing [software]. R 

Foundation for Statistical Computing, Vienna, Austria. 

Riley, S., S. Degloria, and S. D. Elliot. 1999. A terrain ruggedness index that quantifies 

topographic heterogeneity. Internation Journal of Science 5:23–27. 

Saito, T., and M. Rehmsmeier. 2015. The Precision-Recall Plot Is More Informative than the 

ROC Plot When Evaluating Binary Classifiers on Imbalanced Datasets. PLoS ONE 

10:e0118432. 

Sohl, T., and K. Sayler. 2008. Using the FORE-SCE model to project land-cover change in the 

southeastern United States. Ecological Modelling 219:49–65. 

Soil Survey Staff. 2020. Gridded Soil Survey Geographic (gSSURGO) Database  for Virginia, 

Washington DC, Delaware, Kentucky, Maryland, North Carolina, Pennsylvania, 

Tennessee, and West Virginia (FY 2020 Release). United States Department of 

Agriculture, Natural Resources Conservation Service. 



 

 

- 56 -  

Solar Energy Industries Association (SEIA). 2022. State Solar Spotlight: Virginia [factsheet]. 

Southeast Regional Assessment Project (SERAP). 2016. SLEUTH Projected Urban Growth 

[raster datasets]. 

Strobl, C., A.-L. Boulesteix, T. Kneib, T. Augustin, and A. Zeileis. 2008. Conditional variable 

importance for random forests. BMC Bioinformatics 9:307. 

Terando, A. J., J. Costanza, C. Belyea, R. R. Dunn, A. McKerrow, and J. A. Collazo. 2014. The 

southern megalopolis: Using the past to predict the future of urban sprawl in the southeast 

U.S. PLoS ONE 9:e102261. 

U.S. Census Bureau. 2011. 76 FR 53029: Urban Area Criteria for the 2010 Census. Federal 

Register 76:53029–53043. 

U.S. Census Bureau. 2021. TIGER/Line Shapefiles Technical Documentation. 

U.S. Dept. of Agriculture, Natural Resources Conservation Service (NRCS). 2017. Soil Data 

Management Toolbox for ArcGIS, version 5.0: User Guide. National Soil Survey Center, 

National Geospatial Center of Excellence. 

U.S. Geological Survey (USGS). 2017. 1/3 arc-second Digital Elevation Models (DEMs) - 

USGS National Map 3DEP Downloadable Data Collection for Virginia [raster dataset]. 

U.S. Geological Survey (USGS). 2018. USGS National Hydrography Dataset Plus High 

Resolution (NHDPlus HR) for 4-digit Hydrologic Units in Virginia [geodatabase]. 

Virginia DCR Staff. 2008. Virginia Conservation Lands Needs Assessment: Virginia 

Vulnerability Model. Unpublished technical report, Dept. of Conservation and 

Recreation, Division of Natural Heritage, Richmond, Virginia. 

Virginia DCR Staff. 2016. Virginia Department of Conservation and Recreation Strategic Plan. 

Virginia DCR Staff. 2021. Virginia Conservation Lands Database [vector dataset]. 

Virginia DCR Staff. (n.d.). Virginia Land Conservation Foundation [web site]. 

http://www.dcr.virginia.gov/virginia-land-conservation-foundation/. 

Westervelt, J., T. BenDor, and J. Sexton. 2011. A technique for rapidly forecasting regional 

urban growth. Environment and Planning B: Planning and Design 38:61–81. 

Yang, L., S. Jin, P. Danielson, C. Homer, L. Gass, S. M. Bender, A. Case, C. Costello, J. Dewitz, 

J. Fry, M. Funk, B. Granneman, G. C. Liknes, M. Rigge, and G. Xian. 2018. A new 

generation of the United States National Land Cover Database: Requirements, research 

priorities, design, and implementation strategies. ISPRS Journal of Photogrammetry and 

Remote Sensing 146:108–123.  


	Introduction
	Methods
	Spatial data processing
	Input data
	Predictor variables
	Local Site Characteristics
	Neighborhood Characteristics
	Travel Time or Distance to Development Attractors
	Cost surfaces
	Impervious growth hotspots
	Urban cores


	Sample data

	Modeling approach
	Random Forests
	Exploratory phase
	Model testing and prediction


	Results
	Discussion
	Model interpretation
	Limitations and opportunities
	Model comparisons
	Model applications

	Tables
	Figures
	Maps
	Acknowledgements
	References

